GROUP B MODEL QUESTION PAPER

SEMESTER 1

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B. TECH DEGREE EXAMINATION, MONTH AND YEAR

FIRST SEMESTER B. TECH DEGREE EAAMINATION, MONTH AND TEAR							
Course Code: GYMAT101							
x. M	arks: 60 Duration: 2 hours 30	minute	S				
	PART A						
	Answer all questions. Each question carries 3 marks	CO	Marks				
	Find the rank of the matrix $\begin{bmatrix} -1 & 0 & 6 \\ 3 & 6 & 1 \\ -5 & 1 & 3 \end{bmatrix}$	CO1	(3)				
	If 2 is an Eigen value of the matrix $\begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 4 \end{bmatrix}$ then find the other Eigen	CO1	(3)				
	values without using its characteristic equation						
	Solve $y'' + y' - 6y = 0$	CO2	(3)				
	Find the Wronskian corresponding to the solution of $y'' + 3y' + 2y = 0$.	CO2	(3)				
	Find $L(sin^23t)$	CO3	(3)				
	Find $L(e^{-2t}\cosh 4t)$	CO3	(3)				
	Find the Taylor series for $f(x) = \frac{1}{x}$ about $x = -1$	CO4	(3)				
	Find the Fourier coefficient b_n for $f(x) = x$ in $-\pi < x < \pi$	CO4	(3)				
	PART B						
	Answer any one full question from each module. Each question carries 9 m	arks					
	Module 1						
a)	Solve the system of equations	CO1	(4)				
	2x - y + z = 7, $3x + y - 5z = 13$, $x + y + z = 5$						
b)		CO1	(5)				
	$\begin{bmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{bmatrix}$						
a)	Find the values of λ , μ for which the system of equations	CO1	(4)				
	$2x + 3y + 5z = 9$, $7x + 3y - 2z = 8$, $2x + 3y + \lambda z = \mu$						
	has (i) no solution ((ii) infinite number of solutions (iii) unique solution						
	a)	Course Name: MATHEMATICS FOR ELECTRICAL SCIENCE AND PHYSICAL SCIENCE Name: Marks: 60 Duration: 2 hours 30 Duration: 3 D	Course Name: MATHEMATICS FOR ELECTRICAL SCIENCE AND PHYSICAL SCIENCE AND Answer 30 minutes. PART A Answer all questions. Each question carries 3 marks CO1 If 2 is an Eigen value of the matrix $\begin{bmatrix} -1 & 0 & 6 \\ 3 & 6 & 1 \\ -5 & 1 & 3 \end{bmatrix}$ CO2 Find the Wronskian corresponding to the solution of $y'' + 3y' + 2y = 0$. CO3 Find $L(\sin^2 3t)$ CO4 Find the Taylor series for $f(x) = \frac{1}{x}$ about $x = -1$ CO4 Find the Fourier coefficient b_n for $f(x) = x$ in $-\pi < x < \pi$ CO4 PART B Answer any one full question from each module. Each question carries 9 marks Module 1 a) Solve the system of equations $2x - y + z = 7$, $3x + y - 5z = 13$, $x + y + z = 5$ b) Find the Eigen values and Eigen vectors of the following matrix $2x + 3y + 5z = 9$, $7x + 3y - 2z = 8$, $2x + 3y + \lambda z = \mu$ CO1 Find the values of λ , μ for which the system of equations $2x + 3y + 5z = 9$, $7x + 3y - 2z = 8$, $2x + 3y + \lambda z = \mu$				

	b)	Diagonalise $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$	CO1	(5)				
		$\begin{bmatrix} 3 & 7 & 1 \\ 2 & -4 & 3 \end{bmatrix}$						
		Module 2						
11								
	b)	Solve $(D^2 - 16I)y = 3.2e^{4x} + 15e^x$	CO2	(4)				
12	a)	Solve $(D^2 - 16)y = 15e^x + x^2$	CO2	(6)				
	b)	Solve $y''' + y' = 0$	CO2	(3)				
		Module 3						
13	a)	Solve by using Laplace transform, $y'' + 4y' + 3y = e^{-t}$, $y(0) = 1$, $y'(0) = 1$	CO3	(5)				
	b)	Find $L^{-1}\left(\frac{3s+2}{(s-1)(s^2+1)}\right)$	CO3	(4)				
14	a)	Using convolution theorem, find the inverse Laplace transform of $\frac{18s}{(s^2+36)^2}$	CO3	(5)				
	b)	Find $L^{-1}\left(\frac{s+1}{s^2+s+1}\right)$	CO3	(4)				
	<u> </u>	Module 4						
15	a)	Find a Fourier series representation of $f(x) = \begin{cases} -x & ; & -1 < x < 0 \\ x & ; & 0 < x < 1 \end{cases}$.	CO4	(5)				
	b)	Find the Half range cosine series of the function e^{-x} , $0 < x < 1$	CO4	(4)				
16	a)	Find a Fourier series representation of $f(x) = \begin{cases} -x & ; & -1 < x < 0 \\ x & ; & 0 < x < 1 \end{cases}$.	CO4	(4)				
	b)	Find a Fourier series representation of $f(x) = x^2, -\pi \le x \le \pi$. Hence show	CO4	(5)				
		that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$						

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST/SECOND SEMESTER B. TECH DEGREE EXAMINATION, MONTH AND YEAR

		Course Code: GBPHT121		
		Course Name: Physics for Information Science		
Ma	x. M	arks: 60 Duration: 2 hours 30	minute	es
		PART A		
		Answer all questions. Each question carries 3 marks	CO	Marks
1		What are intrinsics and extrinsic semiconductors?	1	(3)
2		What is the meaning of forward biasing of a p-n junction diode?	1	(3)
3		Mention any six applications of a photodiode.	2	(3)
4		Explain the working of PIN photodiode.	2	(3)
5		Explain Meissner effect. Prove that a superconductor is a perfect diamagnet.	3	(3)
6		Define permittivity and relative permittivity.	3	(3)
7		Compare spontaneous emission and stimulated emission	4	(3)
8		Differentiate Step index and Graded index fibers.	4	(3)
		PART B		ı
		Answer any one full question from each module. Each question carries 9 m	arks	
		Module 1		
9	a)	Derive the expressions for concentration of holes in valance band.	1	(5)
	b)	What is a pn junction. Explain the flow of current across pn junction in	1	(4)
		forward bias and revers bias conditions.		
10	a)	Derive diode equation.	1	(9)
		Module 2		
11	a)	With neat labelled diagram explain the working of i) centre tap full wave	2	(6)
		rectifier and ii) full wave bridge rectifier.		
	b)	Draw V-I characterises of Zener diode and Tunnel diode.	2	(3)
12	a)	Explain the working of LED. Write any six advantages of LED	2	(6)
	b)	Write a short note on stringing of solar cells	2	(3)
		Module 3		
13	a)	Compare type I and type II superconductors	3	(6)
	b)	Write any three applications superconductivity	3	(3)
14	a)	Derive Clausius Mossotti relation.	3	(5)
	'		`	

	b)	Calculate the relative permittivity of KCl, when it is subjected to an electric	3	(4)			
	field 1000 Vm ⁻¹ and the resulting polarisation is 4x10 ⁻⁸ Cm ⁻² .						
		Module 4					
15	a)	Explain the construction and working of Ruby laser	4	(9)			
16	a)	Derive the numerical aperture of optic fiber	4	(5)			
	b) An optical fiber has a core of refractive index 1.48 and a cladding of refractive						
		index 1.47. Calculate its numerical aperture and acceptance angle.					

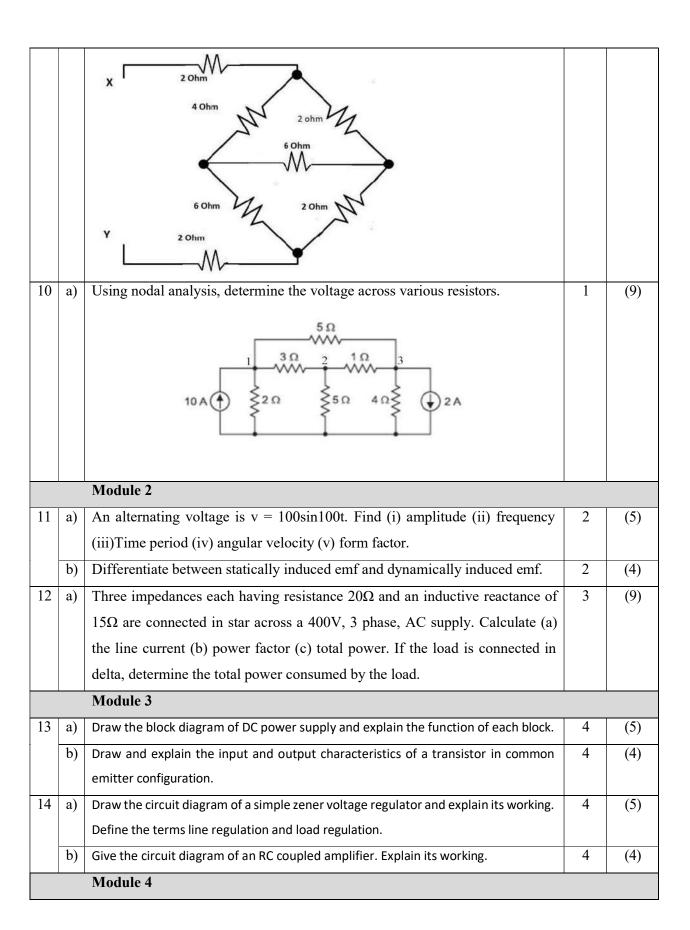
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B. TECH DEGREE EXAMINATION, MONTH AND YEAR

Course Code: GXCYT122								
	Course Name: Chemistry for Information Science / Electrical Science							
			(Common to A & B)					
Ma	x. M	arks: 60	Duration: 2 hours 30	minute	S			
	PART A							
		Answer all	questions. Each question carries 3 marks	CO	Marks			
1			s? How is galvanic series advantageous over in corrosion chemistry?	1	(3)			
2		Why full charging is n	ot allowed in Li-ion cell?	1	(3)			
3		Write any three applic	ations of quantum dots.	2	(3)			
4		Define graphene and v	vrite any two properties.	2	(3)			
5		Explain the role of cor	jugation in absorption maxima with an example.	3	(3)			
6		Write the criteria for a	molecule to be IR active.	3	(3)			
7		Illustrate break point chl	orination	4	(3)			
8		What are greenhouse gas	ses?	4	(3)			
			PART B	'				
		Answer any one full	question from each module. Each question carries 9 m	arks				
			Module 1					
9	a)	How is electroless coppe	er plating done? Write the reactions involved.	1	(5)			
	b)	Explain the determination	n of pH with a neat diagram.	1	(4)			
10	a)	electrode.	n and working of a calomel electrode as a reference	1	(6)			
	b)		d electrode potential of Ni ²⁺ / Ni electrode if the cell Ni ²⁺ (1M) // Cu ²⁺ (0.1M) / Cu is 0.59 V at 25 °C?	1	(3)			
			Module 2					
11	a)	Describe the construct	ion and working of Dye sensitized solar cells.	2	(5)			
	b)	nanomaterials	al reduction methods used for the synthesis of	2	(4)			
12	a)	Describe the construct	ion and working of OLED	2	(5)			
	b)	Write a note on fire re-	ardant polymers with examples.	2	(4)			
			Module 3					
13	a)	Outline the working an	nd application of DETA.	3	(5)			

	b)	Draw the vibrational modes of CO ₂ and H ₂ O and explain their IR active modes.	3	(4)				
14	a)	Write the principle behind the SEM analysis. Also give a schematic diagram	3	(5)				
	of SEM instrument.							
	b) Explain the instrumentation and working of UV-vis spectrometer							
	Module 4							
15	a)	Explain ion exchange process for softening of water?	4	(6)				
	b)	List out any three sustainable development goals.	4	(3)				
16	a)	Describe UASB process.	4	(5)				
	b) Differentiate between BOD and COD.							

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B. TECH DEGREE EXAMINATION, MONTH AND YEAR

Course Code: GMEST103
Course Name: ENGINEERING GRAPHICS AND COMPUTER AIDED DRAWING
(Common to A, B & D)


Max. Marks: 60 Duration: 2 hours 30 minutes

Instructions: Retain Construction lines. Show necessary dimensions. Answer any ONE question from each module. Each question carries 15 marks

	MODULE-1						
SI		СО	MARKS				
1	One end of a line CD is 15 mm above HP and 20 mm in front of VP. At the same time the other end is 60 mm above HP and 50 mm in front of the VP. The distance between the end projectors is 70 mm. Draw the projections of the line and locate the traces. Determine the true and apparent lengths. Also find the true and apparent inclinations.	CO1	15				
2	A line CD of length 65 mm is inclined at 45° to HP and 30° to VP. The end D is 50 mm above HP and 45 mm in front of VP. Draw the projections of the line and locate its traces	CO1	15				
	MODULE-2						
SI		СО	MARKS				
3	A cone of base 40 mm diameter and axis 70 mm long has one of its generators on the HP. A plane containing that generator and the axis is perpendicular to HP and inclined at 45° to the VP. Draw the projection when the base is nearer to the VP than the vertex.	CO2	15				
4	Draw the projections of a triangular pyramid 35 mm side and height 65 mm long, if it is resting on one of the corners of the base in HP with the slant edge containing that base corner making an angle of 30° with HP and top view of the axis making an angle of 45° with XY- line.	CO2	15				
	MODULE-3						
SI		CO	MARKS				
5	A hexagonal pyramid side of the base 30 mm and axis 70 mm rests with its base on the HP and an edge of the base inclined at 30° to VP. A section plane inclined at 45° to VP and perpendicular to HP passes through the pyramid at a distance of 10 mm from the axis and in front of it. Draw its top view, sectional front view and true shape of section.	CO3	15				
6	A pentagonal prism side of base 25 mm and altitude 50 mm, rests on its base on the HP such that an edge of the base is parallel to VP and nearer to the observer. It is cut by a plane inclined at 45° to HP, perpendicular to VP and passing through the centre of the axis. Draw the development of the surface of the truncated prism.	CO3	15				
	MODULE-4						
SI		СО	MARKS				
7	Draw the isometric view of a pentagonal pyramid, side of base 20 mm and height 50 mm which rests centrally with base on a cylinder of diameter 60 mm and height 40 mm.	CO4	15				
8	A cone of diameter 50 mm base and height 60 mm is surmounted over a square slab of 60 mm side and 20 mm thickness on HP so that one of the edges of the square slab is parallel to VP. Draw the isometric projection of the combination.	CO4	15				

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B. TECH DEGREE EXAMINATION, MONTH AND YEAR

Course Code: GXEST104 Course Name: INTRODUCTION TO ELECTRICAL AND ELECTRONICS ENGINEERING (Common to A & B) Max. Marks: 60 Duration: 2 Hours 30 Minutes PART A CO Answer all questions. Each question carries 3 marks Marks 1 Derive the expression for energy stored in the inductor. 1 (3) 2 Define the following terms: (a) magnetic flux density (b) reluctance (c) 2 (3) magnetic field intensity (d) permeability. 3 Explain the phasor diagram and impedance triangle of a series resistive 2 (3) inductive circuit excited by an AC source 4 Derive an relation between line and phase voltages in a three phase star 3 (3) connected system 5 Explain different resistor colour coding schemes 4 (3) 6 Why does voltage gain of an RC coupled amplifier decrease at low and high 4 (3) frequencies? 7 Compare amplitude and frequency modulation. 5 (3) 8 5 (3) With necessary block diagram, explain an electronic instrumentation system. PART B Answer any one full question from each module. Each question carries 9 marks Module 1 Find the equivalent resistance between X-Y terminals in the figure (9) 1

15	a)	Draw the block diagram of a GSM system and explain its working principle.	5	(9)			
16	a)	Draw and Explain the Block diagram of Fiber optic Communication system.	5	(5)			
	b) Draw the block diagram of Digital Multimeter. Explain its working.		5	(4)			

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B. TECH DEGREE EXAMINATION, DECEMBER 2024

	Coi	urse Code: UCEST105				
	Course Name: A	Algorithmic Thinking with P	•			
Max	x. Marks: 60	Duration	2 hours 30	minute	es	
		PART A				
	Answer all question	s. Each question carries 3 ma	ırks	CO	Marks	
1	How do you use a decomposition	on strategy to design a menu-di	riven calculator	1	(3)	
	that supports four basic ari	thmetic operators - addition	n, subtraction,			
	multiplication, and division?					
2	A mad scientist wishes to make	ge a chain out of plutonium a	nd lead pieces.	4	(3)	
	There is a problem, however. I	es of plutonium				
	next to each other, BOOM! T	The question is, in how many	ways can the			
	scientist safely construct a chair					
3	Write a case statement that will	Write a case statement that will examine the value of <i>flag</i> and print one of the				
	following messages, based on it					
	Flag value	Message				
	1	Hot				
	2	Luke warm]			
	3	Cold				
	Any other value	Out of range				
4	Draw a flowchart to print the nu	umbers that are divisible by 4 b	out not by 3 in a	3	(3)	
	list of <i>n</i> positive numbers.					
5	Identify and rectify the problem	with the following recursive de	efinition to find	4	(3)	
	the greatest common divisor of	two positive integers.				
	ABC (n, m)	ABC (n, m)				
	if $\mathbf{n} == 2$ return \mathbf{m}					
	else return ABC(m, n mod m)					
6	Write a recursive procedure to s	search for a key in a list of n in	itegers.	4	(3)	
7	Compare and contrast greedy ar	nd dynamic programming strat	egies.	3	(3)	

	1						
8		Give the pseudocode for brute force technique to find the mode of elements	3	(3)			
		in an array. Mode is the value that appears most frequently in the array.					
		PART B					
		Answer any one full question from each module. Each question carries 9 m	arks				
	1	Module 1					
9		Walk through the six problem-solving steps to find the largest number out of	1	(9)			
		three numbers.					
10	a)	Your professor has given you an assignment on "Algorithmic thinking" to be	2	(5)			
		submitted by this Wednesday. How do you employ means-end analysis to					
		devise a strategy for completing your assignment before the deadline?					
	b)	Name two current problems in your life that might be solved through a	1	(4)			
		heuristic approach. Explain why each of these problems can be solved using					
		heuristics.					
		Module 2					
11	a)	Mr. Shyam, a history professor, would like to know the percentage increase	3	(6)			
		in the population of our country per decade given the first decade and the last					
	decade. Other given data include the population at the beginning of each						
		decade. Draw a flowchart for determining the percentage increase in the					
		population.					
	b)	Draw a flowchart to find the average mileage of a car in kilometers per litre	3	(3)			
		after six fill-ups at petrol pumps. Input data include the number of litres of					
		diesel, the starting odometer reading, and the odometer reading at each fillup.					
12	a)	A standard science experiment is to drop a ball and see how high it bounces.	3	(6)			
		Once the "bounciness" of the ball has been determined, the ratio gives a					
		bounciness index. For example, if a ball dropped from a height of 10 feet					
		bounces 6 feet high, the index is 0.6, and the total distance traveled by the ball					
		is 16 feet after one bounce. If the ball were to continue bouncing, the distance					
		after two bounces would be $10 \text{ ft} + 6 \text{ ft} + 6 \text{ ft} + 3.6 \text{ ft} = 25.6 \text{ ft}$. Note that the					
		distance traveled for each successive bounce is the distance to the floor plus					
		0.6 of that distance as the ball comes back up. Write an algorithm that lets the					
		user enter the initial height of the ball, bounciness index and the number of					
		times the ball is allowed to continue bouncing. Output should be the total					
		distance traveled by the ball.					
	1						

	b)	Light travels a	Light travels at 3×10^8 meters per second. A light-year is the distance a light							
				•	n that inputs a large distance value					
		(in meters) and	•	· ·	1 0					
		/	1 3	Module	3					
13	a)	Write a recu	rsive function		array's minimum and maximum	4	(5)			
	(a)				le (a, b) , where a is the minimum	•	(3)			
			Hement and \boldsymbol{b} is the maximum.							
	b)		Write a program to input a matrix and determine its type: lower triangular,							
		upper triangula	•		offilme its type. Tower triangular,	4	(4)			
14	a)	11 0			ay them in the increasing order of	4	(6)			
1.	(a)		Write a program to read N words and display them in the increasing order of their lengths. The length of each word is also to be displayed.							
	b)				500) arranged in a row. Initially,	4	(3)			
	0)		`		even numbered bulbs are turned	4	(3)			
			· ·		g every third bulb, it is turned ON					
			•		N. This procedure is repeated for					
					so on up to the 500th bulb. Devise					
			•		•					
		an aigorimin u	o determine w		w at the end of the above exercise.					
1.5		G 11 1	.11	Module		2	(6)			
15	a)		_	_	y human stomach is 1.5 litres on	3	(6)			
		•	• •	_	output an efficient lunch menu					
					e available items along with their					
		nutritional val	ues are tabulat	ed below:	1					
		n .	Available	 Nutritional						
		Recipe	quantity	value						
		Cooked rice	2.5 cups	800 calories						
		Cooked fice	2.5 cups	ooo calones						
		Sambar	1.5 cups	140 calories						
		Pototo overe	0.5 aug	50 galarias						
		Potato curry	0.5 cup	50 calories						

		Fish fry	0.5 cup	200 calories			
		Buttermilk	1 cup	98 calories			
		Payasam	2 cups	300 calories			
		You may assume that 1 cup is equivalent to 250ml.					
	b)	How are recursion and dynamic programming (DP) related? Is it possible to					(3)
		construct a DP version for all recursive solutions?					
16	a)	Write a Python program for a random walk simulation in a 2D grid starting				3	(4)
		from the origin (0, 0). At each step, randomly move up, down, left, or right.					
		Print the final position after 10 steps.					
	b) Use divide and conquer to find the majority element in an array, where the						(5)
		majority element appears more than n/2 times. Divide the array into two					
		halves, find the majority element in each half, and combine the results to					
		identify if there is a majority element in the entire array.					
