SEMESTER 3

ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

MATHEMATICS FOR COMPUTER AND INFORMATION SCIENCE-3

(Group A)

Course Code	GAMAT301	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Basic calculus	Course Type	Theory

Course Objectives:

1. To familiarize students with the foundations of probability and analysis of random processes used in various applications in engineering and science.

Module No.	Syllabus Description	Contact Hours
1	Random variables, Discrete random variables and their probability distributions, Cumulative distribution function, Expectation, Mean and variance, the Binomial probability distribution, the Poisson probability distribution, Poisson distribution as a limit of the binomial distribution, Joint pmf of two discrete random variables, Marginal pmf, Independent random variables, Expected value of a function of two discrete variables. [Text 1: Relevant topics from sections 3.1 to 3.4, 3.6, 5.1, 5.2]	9
2	Continuous random variables and their probability distributions, Cumulative distribution function, Expectation, Mean and variance, Uniform, Normal and Exponential distributions, Joint pdf of two Continuous random variables, Marginal pdf, Independent random variables, Expectation value of a function of two continuous variables. [Text 1: Relevant topics from sections 3.1, 4.1, 4.2, 4.3, 4.4, 5.1, 5.2]	9

3	 Limit theorems : Markov's Inequality, Chebyshev's Inequality, Strong Law of Large Numbers (Without proof), Central Limit Theorem (without proof), Stochastic Processes: Discrete-time process, Continuous-time process, Counting Processes, The Poisson Process, Interarrival times (Theorems without proof) [Text 2: Relevant topics from sections 2.7, 2.9, 5.3] 	9
4	Markov Chains, Random Walk Model, Chapman–Kolmogorov Equations, Classification of States, Irreducible Markov chain, Recurrent state, Transient state, Long-Run Proportions. (Theorems without proof) [Text 2: Relevant topics from sections 4.1, 4.2, 4.3, 4.4]	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	
divisions.		
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the concept, properties and important models of discrete random variables and to apply in suitable random phenomena.	К3
CO2	Understand the concept, properties and important models of continuous random variables and to apply in suitable random phenomena.	К3
CO3	Familiarize and apply limit theorems and to understand the fundamental characteristics of stochastic processes.	К3
CO4	Solve problems involving Markov Chains, to understand their theoretical foundations and to apply them to model and predict the behaviour of various stochastic processes.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	2	-	-	-	-	-	-	-	2
CO2	3	3	-	2	-	-	-	-	-	-	-	2
CO3	3	3	-	2	-	-	-	-	-	-	-	2
CO4	3	3	-	2	-	-	-	-	-	-	-	2

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Probability and Statistics for Engineering and the Sciences	Devore J. L	Cengage Learning	9 th edition, 2016			
2	Introduction to Probability Models	Sheldon M. Ross	Academic Press	13 th edition, 2024			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Probability and Random Processes for Electrical and Computer Engineers	John A. Gubner	Cambridge University Press	2012			
2	Probability Models for Computer Science	Sheldon M. Ross	Academic Press	1 st edition, 2001			
3	Probability, Random Variables and Stochastic Processes	Papoulis, A. & Pillai, S.U.,	Tata McGrawHill.	4 th edition, 2002			
4	Probability, Statistics and Random Processes	Kousalya Pappu	Pearson	2013			

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://onlinecourses.nptel.ac.in/noc22_mg31/preview				
2	https://onlinecourses.nptel.ac.in/noc22_mg31/preview				
3	https://archive.nptel.ac.in/courses/108/103/108103112/				
4	https://archive.nptel.ac.in/courses/108/103/108103112/				

Course Code	PCAIT302	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

FOUNDATIONS OF ARTIFICIAL INTELLIGENCE

Course Objectives:

- 1. Introduce the fundamental principles of intelligent systems.
- **2.** Impart a good insight into the characteristics of intelligent systems, knowledge representation schemes, logic and inference mechanisms.

Module No.	Syllabus Description	Contact Hours
1	Introduction to Artificial intelligence: AI definition - Foundations of AI, History and applications of AI; Intelligent agents - Agents and Environments, The concept of rationality, The nature of environments, Structure of agents.	7
2	 Problem Solving by Searching:- Problem Solving Agents and examples - Searching for Solutions; Uninformed Search strategies - Breadth First Search, Uniform Cost Search, Depth First Search, Depth Limited Search, Iterative deepening DFS; Heuristic function; Informed Search Strategies - Greedy Search, A* Search, AO* Search. 	13
3	Advanced Search and Game Playing:- Adversarial Search - Games, Optimal decisions in Games, MinMax algorithm, Alpha_Beta pruning; Constraint Satisfaction Problems- Constraint Propagation, Inferences in CSP's, Backtracking Search for CSP's.	10
4	Knowledge, Logic, and Reasoning Patterns:- Knowledge Based Agents - The Wumpus World; Logic - Propositional Logic; First order logic - Syntax and Semantics, Using First Order Logic, Knowledge Engineering in First order logic, Inference in first order logic; Propositional vs. first order inference; Unification & Lifting; Forward chaining; Backward chaining.	14

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

	Each question carries 9 marks.	
 Total of 8 Questions, each carrying 3 marks 	Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks)	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the fundamental concepts of intelligent systems.	K2
CO2	Apply searching strategies for real time scenarios.	К3
CO3	Apply Constraint satisfaction problems for real time scenarios.	К3
CO4	Apply methods of knowledge representation and processing within expert systems.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									2
CO2	3	3	3	2								2
CO3	3	3	3	2								2
CO4	3	3	3	2								2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Artificial Intelligence – A Modern Approach	Stuart Russel, Peter Norvig	Pearson Education	4/e, 2021

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Artificial Intelligence: A new Synthesis	J. Nilsson	Elsevier Publishers.	1/e, 1998
2	Computational Intelligence : A logical approach	David Poole, Alan Mackworth, Randy Goebel	Oxford University Press	1/e, 2004
3	Artificial Intelligence: Structures and Strategies for Complex Problem Solving	George F. Luger	Pearson Education	6/e, 2009

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://onlinecourses.nptel.ac.in/noc21_ge20/preview					
2	https://onlinecourses.swayam2.ac.in/cec21_cs08/preview					

DATA STRUCTURES AND ALGORITHMS

(Common to CS/CA/CM/CD/CR/AI/AM/AD/CB/CN/CC/CU/CI/CG)

Course Code	PCCST303	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	UCEST105	Course Type	Theory

Course Objectives:

- 1. To provide the learner a comprehensive understanding of data structures and algorithms.
- **2.** To prepare them for advanced studies or professional work in computer science and related fields.

Module No.	Syllabus Description	Contact Hours
	Basic Concepts of Data Structures	
	Definitions; Data Abstraction; Performance Analysis - Time & Space	
	Complexity, Asymptotic Notations; Polynomial representation using Arrays,	
1	Sparse matrix (Tuple representation); Stacks and Queues - Stacks, Multi-	11
	Stacks, Queues, Circular Queues, Double Ended Queues; Evaluation of	
	Expressions- Infix to Postfix, Evaluating Postfix Expressions.	
	Linked List and Memory Management	
	Singly Linked List - Operations on Linked List, Stacks and Queues using	
2	Linked List, Polynomial representation using Linked List; Doubly Linked	11
	List; Circular Linked List; Memory allocation - First-fit, Best-fit, and Worst-	
	fit allocation schemes; Garbage collection and compaction.	
	Trees and Graphs	
	Trees :- Representation Of Trees; Binary Trees - Types and Properties, Binary	
	Tree Representation, Tree Operations, Tree Traversals; Expression Trees;	
3	Binary Search Trees - Binary Search Tree Operations; Binary Heaps - Binary	11
	Heap Operations, Priority Queue.	
	Graphs :- Definitions; Representation of Graphs; Depth First Search and	
	Breadth First Search; Applications of Graphs - Single Source All Destination.	

	Sorting and Searching	
	Sorting Techniques :- Selection Sort, Insertion Sort, Quick Sort, Merge Sort,	
	Heap Sort, Radix Sort.	
4	Searching Techniques :- Linear Search, Binary Search, Hashing - Hashing	11
	functions : Mid square, Division, Folding, Digit Analysis; Collision	
	Resolution : Linear probing, Quadratic Probing, Double hashing, Open	
	hashing.	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Identify appropriate data structures for solving real world problems.	К3
CO2	Describe and implement linear data structures such as arrays, linked lists, stacks, and queues.	К3
СО3	Describe and Implement non linear data structures such as trees and graphs.	К3
CO4	Select appropriate searching and sorting algorithms to be used in specific circumstances.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Fundamentals of Data Structures in C	Ellis Horowitz, Sartaj Sahni and Susan Anderson-Freed,	Universities press,	2/e, 2007						
2	Introduction to Algorithms	Thomas H Cormen, Charles Leisesrson, Ronald L Rivest, Clifford Stein		3/e, 2009						

	Reference Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	Classic Data Structures	Samanta D.	Prentice Hall India.	2/e, 2018							
2	Data Structures and Algorithms	Aho A. V., J. E. Hopcroft and J. D. Ullman	Pearson Publication.	1/e, 2003							
3	Introduction to Data Structures with Applications	Tremblay J. P. and P. G. Sorenson	Tata McGraw Hill.	2/e, 2017							
4	Theory and Problems of Data Structures	Lipschuts S.	Schaum's Series	2/e, 2014							

	Video Links (NPTEL, SWAYAM)								
Module No.	Link ID								
1	https://nptel.ac.in/courses/106102064								
2	https://ocw.mit.edu/courses/6-851-advanced-data-structures-spring-2012/								

INTRODUCTION TO DATA SCIENCE

Course Code	PBADT304	CIE Marks	60
Teaching Hours/Week (L: T:P: R)	3:0:0:1	ESE Marks	40
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To understand the basic concepts of data science
- **2.** To understand data representation, data pre-processing, data classification and model evaluation techniques

Module No.	Syllabus Description	Contact Hours
1	 Introduction to data :- Structured, Unstructured, Semi-structured, Data sets & Patterns; Brief history of Data Science; Introduction to Data Science; Importance of Data Science; Differences between AI, ML, DL, Data Science & Data Analytics; Real world applications of data science; Steps in data science process. Ethical and privacy implications of Data Science; Tools and Skills Needed – Introduction of platforms, Tools, Frameworks, Languages, Databases and Libraries, Current trends & Major research challenges in data science 	9
2	Matrices to represent relations between data, and necessary linear algebraic operations on matrices -Approximately representing matrices by decompositions (SVD and PCA); Statistics: Descriptive Statistics: distributions and probability – Statistical Inference: Populations and samples – Statistical modeling – probability distributions – fitting a model – Hypothesis Testing	10
3	Data pre-processing: Data cleaning – data integration – Data Reduction Data Transformation and Data Discretization Evaluation of classification	13

	 methods – Confusion matrix, Students T-tests and ROC curves-Exploratory Data Analysis – Basic tools (plots, graphs and summary statistics) of EDA, Philosophy of EDA 	
4	Basic Machine Learning Algorithms- Linear Regression- Logistic Regression – Classifiers - Feature Generation and Feature Selection – Feature Selection algorithms – Filters- Wrappers-Decision Trees-Random Forests	11

Suggestion on Project Topics

Students can implement various data related projects, from any domain, using the techniques studied in the syllabus. It may contain sections for data storage, data pre-processing and small levels of data mining to recognize patterns in the data. Socially relevant project domains are highly appreciated. Check the datasets available at https://www.kaggle.com/datasets/ and perform data pre-processing operations such as data cleaning, missing value management and mine useful information from the dataset.

Course Assessment Method

(CIE: 60 marks, ESE: 40 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Project	Internal Ex-1	Internal Ex-2	Total
5	30	12.5	12.5	60

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 2 marks (8x2 =16 marks) 	 2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 subdivisions. Each question carries 6 marks. (4x6 = 24 marks) 	40

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Recall the fundamental concepts and applications of data science, and make inferences on key important points.	K2
CO2	Comprehend the various methods of data representation	K2
CO3	Analyse the different steps in data pre-processing and model evaluation	К3
CO4	Perform feature generation and feature selection for classification	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										3
CO2	3	3	3	2								3
CO3	3	3	3	2								3
CO4	3	3	3	2								3

	Text Books								
Sl. No	Title of the Book	Title of the BookName of the Author/s							
1	Data mining Concepts and Techniques	Jiawei Han, Michelin Kamber, Jian Pei	Morgan Kaufmann Publishers	3/e, 2011					
2	Fundamentals of Data Science	Sanjeev J. Wagh, Manisha S. Bhende, and Anuradha D. Thakare	CRC Press	1/e, 2021					
3	Data Mining and Analysis: Fundamental Concepts and Algorithms	Mohammed J. Zaki and Wagner Miera Jr	Cambridge University Press	1/e2014.					
4	Doing Data Science, Straight Talk From The Frontline	Cathy O'Neil and Rachel Schutt	O'Reilly	1/e2014					

	Reference Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Year						
1	Data Science for Business	Foster Provost, Tom Fawcett	O'Reilly Media	1/e, 2013						
2	Data Science from Scratch: First Principles with Python",	Joel Grus,	O'Reilly Media	1/e, 2015						
3	Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython",	Wes McKinney,	O'Reilly Media	1/e,2012						

Video Links (NPTEL, SWAYAM)								
Module No.	Link ID							
1	https://nptel.ac.in/courses/106106179							
2	https://onlinecourses.swayam2.ac.in/imb23_mg64/preview							

PBL Course Elements

L: Lecture	R: Project (1 Hr.), 2 Faculty Members					
(3 Hrs.)	Tutorial	Practical	Presentation			
Lecture delivery	Project identification	Simulation/ Laboratory Work/ Workshops	Presentation (Progress and Final Presentations)			
Group discussion	Project Analysis	Data Collection	Evaluation			
Question answer Sessions/ Brainstorming Sessions	Analytical thinking and self-learning	Testing	Project Milestone Reviews, Feedback, Project reformation (If required)			
Guest Speakers (Industry Experts)	Case Study/ Field Survey Report	Prototyping	Poster Presentation/ Video Presentation: Students present their results in a 2 to 5 minutes video			

Sl. No	No Evaluation for						
1	Project Planning and Proposal	5					
2	2 Contribution in Progress Presentations and Question Answer Sessions						
3	Involvement in the project work and Team Work	3					
4	Execution and Implementation	10					
5	Final Presentations	5					
6	Project Quality, Innovation and Creativity	3					
	Total	30					

Assessment and Evaluation for Project Activity

1. Project Planning and Proposal (5 Marks)

- Clarity and feasibility of the project plan
- Research and background understanding
- Defined objectives and methodology

2. Contribution in Progress Presentation and Question Answer Sessions (4 Marks)

- Individual contribution to the presentation
- Effectiveness in answering questions and handling feedback

3. Involvement in the Project Work and Team Work (3 Marks)

- Active participation and individual contribution
- Teamwork and collaboration

4. Execution and Implementation (10 Marks)

- Adherence to the project timeline and milestones
- Application of theoretical knowledge and problem-solving
- Final Result

5. Final Presentation (5 Marks)

- Quality and clarity of the overall presentation
- Individual contribution to the presentation
- Effectiveness in answering questions

6. Project Quality, Innovation, and Creativity (3 Marks)

- Overall quality and technical excellence of the project
- Innovation and originality in the project
- Creativity in solutions and approaches

DIGITAL ELECTRONICS AND LOGIC DESIGN

Course Code	GAEST305	CIE Marks	40
Teaching Hours/Week (L:T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

(Common to Group A)

Course Objectives:

- 1. To familiarize the basic concepts of Boolean algebra and digital systems.
- 2. To enable the learner to design simple combinational and sequential logic circuits which is essential in understanding organization & design of computer systems.

Module No.	Syllabus Description	Contact Hours
	Introduction to digital Systems :- Digital abstraction	
	Number Systems - Binary, Hexadecimal, grouping bits, Base conversion;	
	Binary Arithmetic - Addition and subtraction, Unsigned and Signed numbers;	
	Fixed-Point Number Systems; Floating-Point Number Systems	
	Basic gates- Operation of a Logic circuit; Buffer; Gates - Inverter, AND gate,	
	OR gate, NOR gate, NAND gate, XOR gate, XNOR gate; Digital circuit	
1	operation - logic levels, output dc specifications, input dc specifications, noise	11
	margins, power supplies; Driving loads - driving other gates, resistive loads and	
	LEDs.	
	Verilog (Part 1) :-	
	HDL Abstraction; Modern digital design flow - Verilog constructs: data types,	
	the module, Verilog operators.	

	Combinational Logic Design: -					
	Boolean Algebra - Operations, Axioms, Theorems; Combinational logic					
	analysis - Canonical SOP and POS, Minterm and Maxterm equivalence; Logic					
	minimization - Algebraic minimization, K-map minimization, Dont cares, Code					
2	convertors.					
	Modeling concurrent functionality in Verilog:-	11				
	Continuous assignment - Continuous Assignment with logical operators,					
	Continuous assignment with conditional operators, Continuous assignment with					
	delay.					
	MSI Logic and Digital Building Blocks					
	MSI logic - Decoders (One-Hot decoder, 7 segment display decoder),					
	Encoders, Multiplexers, Demultiplexers; Digital Building Blocks - Arithmetic					
3	Circuits - Half adder, Full adder, half subtractor, full subtractor; Comparators.					
	Structural design and higher alow lower lovel module instantiation acts lovel					
	Structural design and hierarchy - lower level module instantiation, gate level					
	primitives, user defined primitives, adding delay to primitives.					
	Sequential Logic Design :- Latches and Flip-Flops- SR latch, SR latch with					
	enable, JK flipflop, D flipflop, Register Enabled Flip-Flop, Resettable Flip-					
	Flop. Sequential logic timing considerations; Common circuits based on					
	sequential storage devices - toggle flop clock divider, asynchronous ripple					
	counter, shift register.					
4	Finite State Machines :-	14				
	Finite State Machines - logic synthesis for an FSM, FSM design process and					
	design examples; Synchronous Sequential Circuits - Counters;					
	Varilog (Part 2)					
	Verilog (Part 2) : -					
	Procedural assignment; Conditional Programming constructs; Test benches;					
	Modeling a D flipflop in Verilog; Modeling an FSM in Verilog.					

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject Internal (Written)		Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks. (8x3 =24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome					
CO1	Summarize the basic concept of different number systems and perform conversion and arithmetic operations between different bases.	K2				
CO2	Interpret a combinational logic circuit to determine its logic expression, truth table, and timing information and to synthesize a minimal logic circuit through algebraic manipulation or with a Karnaugh map.	К2				
CO3	Illustrate the fundamental role of hardware description languages in modern digital design and be able to develop the hardware models for different digital circuits.	К3				
CO4	Develop MSI logic circuits using both the classical digital design approach and the modern HDL-based approach.	К3				
CO5	Develop common circuits based on sequential storage devices including counter, shift registers and a finite state machine using the classical digital design approach and an HDL-based structural approach.	К3				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3	3								3
CO3	3	3	3	3	3							3
CO4	3	3	3	3	3							3
CO5	3	3	3	3	3							3

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Introduction to Logic Circuits & Logic Design with Verilog	Brock J. LaMeres	Springer International Publishing	2/e, 2017				
2	Digital Design and Computer Architecture - RISC-V Edition	Sarah L. Harris, David Harris	Morgan Kaufmann	1/e, 2022				

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Digital Design with an Introduction to the Verilog HDL, VHDL, and System Verilog	M Morris Mano, Michael D Ciletti	Pearson	6/e, 2018					
2	Digital Fundamentals	al Fundamentals Thomas Floyd Pearson		11/e, 2015					
3	Fundamentals of Digital Logic with Verilog Design	Stephen Brown, Zvonko Vranesic	McGrawHill	3/e, 2014					
4	Switching and Finite Automata Theory	Zvi Kohavi Niraj K. Jha	Cambridge University Press	3/e, 2010					

	Video Links (NPTEL, SWAYAM)				
No.	No. Link ID				
1	1 https://nptel.ac.in/courses/117105080				
2	2 https://onlinecourses.nptel.ac.in/noc21_ee39/				
3	3 https://onlinecourses.nptel.ac.in/noc24_cs61/				

ECONOMICS FOR ENGINEERS

(Common to All Branches)

Course Code	UCHUT346	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	2:0:0:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Understanding of finance and costing for engineering operation, budgetary planning and control
- **2.** Provide fundamental concept of micro and macroeconomics related to engineering industry
- 3. Deliver the basic concepts of Value Engineering.

Module No.	Syllabus Description					
1	Basic Economics Concepts - Basic economic problems – Production Possibility Curve – Utility – Law of diminishing marginal utility – Law of Demand - Law of supply – Elasticity - measurement of elasticity and its applications – Equilibrium- Changes in demand and supply and its effects Production function - Law of variable proportion – Economies of Scale – Internal and External Economies – Cobb-Douglas Production Function	6				
2	Cost concepts – Social cost, private cost – Explicit and implicit cost – Sunk cost - Opportunity cost - short run cost curves - Revenue concepts Firms and their objectives – Types of firms – Markets - Perfect Competition – Monopoly - Monopolistic Competition - Oligopoly (features and equilibrium of a firm)	6				
3	Monetary System – Money – Functions - Central Banking –Inflation -	6				

	Causes and Effects – Measures to Control Inflation - Monetary and Fiscal policies – Deflation Taxation – Direct and Indirect taxes (merits and demerits) - GST National income – Concepts - Circular Flow – Methods of Estimation and Difficulties - Stock Market – Functions- Problems faced by the Indian stock market-Demat Account and Trading Account – Stock market Indicators- SENSEX and NIFTY	
4	Value Analysis and value Engineering - Cost Value, Exchange Value, Use Value, Esteem Value - Aims, Advantages and Application areas of Value Engineering - Value Engineering Procedure - Break-even Analysis - Cost- Benefit Analysis - Capital Budgeting - Process planning	6

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Case study/Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
10	15	12.5	12.5	50

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B		
 Minimum 1 and Maximum 2 Questions from each module. Total of 6 Questions, each 	 2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 sub divisions. 	50	
carrying 3 marks (6x3 =18marks)	 divisions. Each question carries 8 marks. (4x8 = 32 marks) 		

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Understand the fundamentals of various economic issues using laws and learn the concepts of demand, supply, elasticity and production function.	K2			
CO2	Develop decision making capability by applying concepts relating to costs and revenue, and acquire knowledge regarding the functioning of firms in different market situations.	К3			
CO3	Outline the macroeconomic principles of monetary and fiscal systems, national income and stock market.	K2			
CO4	Make use of the possibilities of value analysis and engineering, and solve simple business problems using break even analysis, cost benefit analysis and capital budgeting techniques.	К3			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	-	-	1	-	-	-	-	1	-
CO2	-	-	-	-	-	1	1	-	-	-	1	-
CO3	-	-	-	-	1	-	-	-	-	-	2	-
CO4	-	-	-	-	1	1	-	-	-	-	2	-

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Managerial Economics	Geetika, Piyali Ghosh and Chodhury	Tata McGraw Hill,	2015				
2	Engineering Economy	H. G. Thuesen, W. J. Fabrycky	РНІ	1966				
3	Engineering Economics	R. Paneerselvam	PHI	2012				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Engineering Economy	Leland Blank P.E, Anthony Tarquin P. E.	Mc Graw Hill	7 TH Edition				
2	Indian Financial System	Khan M. Y.	Tata McGraw Hill	2011				
3	Engineering Economics and analysis	Donald G. Newman, Jerome P. Lavelle	Engg. Press, Texas	2002				
4	Contemporary Engineering Economics	Chan S. Park	Prentice Hall of India Ltd	2001				

SEMESTER S3/S4

ENGINEERING ETHICS AND SUSTAINABLE DEVELOPMENT

Course Code	UCHUT347	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	2:0:0:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Equip with the knowledge and skills to make ethical decisions and implement gendersensitive practices in their professional lives.
- **2.** Develop a holistic and comprehensive interdisciplinary approach to understanding engineering ethics principles from a perspective of environment protection and sustainable development.
- 3. Develop the ability to find strategies for implementing sustainable engineering solutions.

Module No.	Syllabus Description		
1	 Fundamentals of ethics - Personal vs. professional ethics, Civic Virtue, Respect for others, Profession and Professionalism, Ingenuity, diligence and responsibility, Integrity in design, development, and research domains, Plagiarism, a balanced outlook on law - challenges - case studies, Technology and digital revolution-Data, information, and knowledge, Cybertrust and cybersecurity, Data collection & management, High technologies: connecting people and places-accessibility and social impacts, Managing conflict, Collective bargaining, Confidentiality, Role of confidentiality in moral integrity, Codes of Ethics. Basic concepts in Gender Studies - sex, gender, sexuality, gender spectrum: beyond the binary, gender identity, gender expression, gender stereotypes, Gender disparity and discrimination in education, employment and everyday life, History of women in Science & Technology, Gendered technologies & innovations, Ethical values and practices in 	6	

	connection with gender - equity, diversity & gender justice, Gender policy	
	and women/transgender empowerment initiatives.	
2	Introduction to Environmental Ethics: Definition, importance and historical development of environmental ethics, key philosophical theories (anthropocentrism, biocentrism, ecocentrism). Sustainable Engineering Principles: Definition and scope, triple bottom line (economic, social and environmental sustainability), life cycle analysis and sustainability metrics. Ecosystems and Biodiversity: Basics of ecosystems and their functions, Importance of biodiversity and its conservation, Human impact on ecosystems and biodiversity loss, An overview of various ecosystems in Kerala/India, and its significance. Landscape and Urban Ecology: Principles of landscape ecology, Urbanization and its environmental impact, Sustainable urban planning and green infrastructure.	6
3	Hydrology and Water Management: Basics of hydrology and water cycle, Water scarcity and pollution issues, Sustainable water management practices, Environmental flow, disruptions and disasters. Zero Waste Concepts and Practices: Definition of zero waste and its principles, Strategies for waste reduction, reuse, reduce and recycling, Case studies of successful zero waste initiatives. Circular Economy and Degrowth: Introduction to the circular economy model, Differences between linear and circular economies, degrowth principles, Strategies for implementing circular economy practices and degrowth principles in engineering. Mobility and Sustainable Transportation: Impacts of transportation on the environment and climate, Basic tenets of a Sustainable Transportation design, Sustainable urban mobility solutions, Integrated mobility solutions.	6
4	 Renewable Energy and Sustainable Technologies: Overview of renewable energy sources (solar, wind, hydro, biomass), Sustainable technologies in energy production and consumption, Challenges and opportunities in renewable energy adoption. Climate Change and Engineering Solutions: Basics of climate change science, Impact of climate change on natural and human systems, Kerala/India and the Climate crisis, Engineering solutions to mitigate, adapt and build resilience to climate change. Environmental Policies and Regulations: Overview of key environmental policies and regulations (national and international), Role of engineers in policy 	6

implementation and compliance, Ethical considerations in environmental policy-making. **Case Studies and Future Directions:** Analysis of real-world case studies, Emerging trends and future directions in environmental ethics and sustainability, Discussion on the role of engineers in promoting a sustainable future.

Course Assessment Method (CIE: 50 marks, ESE: 50)

Continuous Internal Evaluation Marks (CIE):

Continuous internal evaluation will be based on individual and group activities undertaken throughout the course and the portfolio created documenting their work and learning. The portfolio will include reflections, project reports, case studies, and all other relevant materials.

- The students should be grouped into groups of size 4 to 6 at the beginning of the semester. These groups can be the same ones they have formed in the previous semester.
- Activities are to be distributed between 2 class hours and 3 Self-study hours.
- The portfolio and reflective journal should be carried forward and displayed during the 7th Semester Seminar course as a part of the experience sharing regarding the skills developed through various courses.

SI. No.	Item	Particulars	Group/I ndividua l (G/I)	Marks
1	Reflective Journal	Weekly entries reflecting on what was learned, personal insights, and how it can be applied to local contexts.	Ι	5
2	Micro project (Detailed	 1 a) Perform an Engineering Ethics Case Study analysis and prepare a report 1 b) Conduct a literature survey on 'Code of Ethics for Engineers' and prepare a sample code of ethics 	G	8
	documentation of the project, including methodologies, findings, and	 Listen to a TED talk on a Gender-related topic, do a literature survey on that topic and make a report citing the relevant papers with a specific analysis of the Kerala context 	G	5
	reflections)	3. Undertake a project study based on the concepts of sustainable development* - Module II, Module III & Module IV	G	12
3	Activities	2. One activity* each from Module II, Module III & Module IV	G	15
4	Final Presentation	A comprehensive presentation summarising the key takeaways from the course, personal reflections, and proposed future actions based on the learnings.	G	5
	1	Total Marks		50

*Can be taken from the given sample activities/projects

Evaluation Criteria:

- **Depth of Analysis**: Quality and depth of reflections and analysis in project reports and case studies.
- Application of Concepts: Ability to apply course concepts to real-world problems and local contexts.
- Creativity: Innovative approaches and creative solutions proposed in projects and reflections.
- **Presentation Skills**: Clarity, coherence, and professionalism in the final presentation.

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Develop the ability to apply the principles of engineering ethics in their professional life.	К3
CO2	Develop the ability to exercise gender-sensitive practices in their professional lives	K4
CO3	Develop the ability to explore contemporary environmental issues and sustainable practices.	K5
CO4	Develop the ability to analyse the role of engineers in promoting sustainability and climate resilience.	K4
C05	Develop interest and skills in addressing pertinent environmental and climate-related challenges through a sustainable engineering approach.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1						3	2	3	3	2		2
CO2		1				3	2	3	3	2		2
CO3						3	3	2	3	2		2
CO4		1				3	3	2	3	2		2
CO5						3	3	2	3	2		2

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Ethics in Engineering Practice and Research	Caroline Whitbeck	Cambridge University Press & Assessment	2nd edition & August 2011				
2	Virtue Ethics and Professional Roles	Justin Oakley	Cambridge University Press & Assessment	November 2006				
3	Sustainability Science	Bert J. M. de Vries	Cambridge University Press & Assessment	2nd edition & December 2023				
4	Sustainable Engineering Principles and Practice	Bhavik R. Bakshi,	Cambridge University Press & Assessmen	2019				
5	Engineering Ethics	M Govindarajan, S Natarajan and V S Senthil Kumar	PHI Learning Private Ltd, New Delhi	2012				
6	Professional ethics and human values	RS Naagarazan	New age international (P) limited New Delhi	2006.				
7	Ethics in Engineering	Mike W Martin and Roland Schinzinger,	Tata McGraw Hill Publishing Company Pvt Ltd, New Delhi	4" edition, 2014				

Suggested Activities/Projects:

Module-II

- Write a reflection on a local environmental issue (e.g., plastic waste in Kerala backwaters or oceans) from different ethical perspectives (anthropocentric, biocentric, ecocentric).
- Write a life cycle analysis report of a common product used in Kerala (e.g., a coconut, bamboo or rubber-based product) and present findings on its sustainability.
- Create a sustainability report for a local business, assessing its environmental, social, and economic impacts
- Presentation on biodiversity in a nearby area (e.g., a local park, a wetland, mangroves, college campus etc) and propose conservation strategies to protect it.
- Develop a conservation plan for an endangered species found in Kerala.

- Analyze the green spaces in a local urban area and propose a plan to enhance urban ecology using native plants and sustainable design.
- Create a model of a sustainable urban landscape for a chosen locality in Kerala.

Module-III

- Study a local water body (e.g., a river or lake) for signs of pollution or natural flow disruption and suggest sustainable management and restoration practices.
- Analyse the effectiveness of water management in the college campus and propose improvements calculate the water footprint, how to reduce the footprint, how to increase supply through rainwater harvesting, and how to decrease the supply-demand ratio
- Implement a zero waste initiative on the college campus for one week and document the challenges and outcomes.
- Develop a waste audit report for the campus. Suggest a plan for a zero-waste approach.
- Create a circular economy model for a common product used in Kerala (e.g., coconut oil, cloth etc).
- Design a product or service based on circular economy and degrowth principles and present a business plan.
- Develop a plan to improve pedestrian and cycling infrastructure in a chosen locality in Kerala

Module-IV

- Evaluate the potential for installing solar panels on the college campus including cost-benefit analysis and feasibility study.
- Analyse the energy consumption patterns of the college campus and propose sustainable alternatives to reduce consumption What gadgets are being used? How can we reduce demand using energy-saving gadgets?
- Analyse a local infrastructure project for its climate resilience and suggest improvements.
- Analyse a specific environmental regulation in India (e.g., Coastal Regulation Zone) and its impact on local communities and ecosystems.
- Research and present a case study of a successful sustainable engineering project in Kerala/India (e.g., sustainable building design, water management project, infrastructure project).
- Research and present a case study of an unsustainable engineering project in Kerala/India highlighting design and implementation faults and possible corrections/alternatives (e.g., a housing complex with water logging, a water management project causing frequent floods, infrastructure project that affects surrounding landscapes or ecosystems).

DATA STRUCTURES LAB

(Common to CS/CA/CM/CD/CR/AI/AM/AD/CB/CN/CC/CU/CI/CG)

Course Code	PCCSL307	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	GYEST204	Course Type	Lab

Course Objectives:

1. To give practical experience for learners on implementing different linear and non linear data structures, and algorithms for searching and sorting.

Expt.	Experiments
No.	Experiments
1	Find the sum of two sparse polynomials using arrays
2	Find the transpose of a sparse matrix and sum of two sparse matrices.
3	Convert infix expression to postfix (or prefix) and then evaluate using stack,
4	Implement Queue, DEQUEUE, and Circular Queue using arrays.
5	Implement backward and forward navigation of visited web pages in a web browser (i.e. back and forward buttons) using doubly linked list operations.
6	Implement addition and multiplication of polynomials using singly linked lists.
7	Create a binary tree for a given simple arithmetic expression and find the prefix / postfix equivalent.
8	Implement a dictionary of word-meaning pairs using binary search trees.
9	Find the shortest distance of every cell from a landmine inside a maze.
10	We have three containers whose sizes are 10 litres, 7 litres, and 4 litres, respectively. The 7-litre and 4-litre containers start out full of water, but the 10-litre container is initially empty. We are allowed one type of operation: pouring the contents of one container into another, stopping only when the source container is empty or the destination container is full. We want to know if there is a sequence of pourings that leaves exactly 2 litres in the 7 or 4-litre container. Model this as a graph problem and solve.

11	Implement the find and replace feature in a text editor.
12	Given an array of sorted items, implement an efficient algorithm to search for specific
	item in the array.
13	Implement Bubble sort, Insertion Sort, Radix sort, Quick Sort, and Merge Sort and
	compare the number of steps involved.
	The General post office wishes to give preferential treatment to its customers. They have
	identified the customer categories as Defence personnel, Differently abled, Senior citizen,
14	Ordinary. The customers are to be given preference in the decreasing order - Differently
	abled, Senior citizen, Defence personnel, Normal person. Generate the possible sequence
	of completion.
	Implement a spell checker using a hash table to store a dictionary of words for fast
15	lookup. Implement functions to check if a word is valid and to suggest corrections for
15	misspelled words.
	-
16	Simulation of a basic memory allocator and garbage collector using doubly linked list
	The CSE dept is organizing a tech fest with so many exciting events. By participating
	in an event, you can claim for activity points as stipulated by KTU. Each event i gives
17	you A[i] activity points where A is an array. If you are not allowed to participate in more
	you A[1] activity points where A is an array. If you are not anowed to participate in more
	than k events, what's the max number of points that you can earn?
	Merge K sorted lists into a single sorted list using a heap. Use a min-heap to keep track of
18	the smallest element from each list. Repeatedly extract the smallest element and insert the
	next element from the corresponding list into the heap until all lists are merged.

Course Assessment Method

(CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/	Conduct of experiment/	Result with valid			
Preparatory	Execution of work/	inference/	Viva	Dered	T-4-1
work/Design/	troubleshooting/	Quality of	voce	Record	Total
Algorithm	Programming	Output			
10	15	10	10	5	50

• Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.

• Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Model a real world problem using suitable data structure and implement the solution.	К3
CO2	Compare efficiency of different data structures in terms of time and space complexity.	K4
CO3	Evaluate the time complexities of various searching and sorting algorithms.	К5
CO4	Differentiate static and dynamic data structures in terms of their advantages and application.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3				3				3
CO2	3	3	3	3				3				3
CO3	3	3	3	3				3				3
CO4	3	3	3	3				3				3

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	or/s Name of the Publisher			
1	Fundamentals of Data Structures in C	Ellis Horowitz, Sartaj Sahni and Susan Anderson-Freed,	Universities Press,	2/e, 2007		
2	Introduction to Algorithms	Thomas H Cormen, Charles Leisesrson, Ronald L Rivest, Clifford Stein	PHI	3/e, 2009		

	Reference Books				
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Classic Data Structures	Samanta D.	Prentice Hall India.	2/e, 2018	
2	Data Structures and Algorithms	Aho A. V., J. E. Hopcroft and J. D. Ullman	Pearson Publication.	1/e, 2003	
3	Introduction to Data Structures with Applications	Tremblay J. P., P. G. Sorenson	Tata McGraw Hill.	2/e, 2017	
4	Theory and Problems of Data Structures	Lipschutz S.	Schaum's Series	2/e, 2014	

Video Links (NPTEL, SWAYAM)				
No.	Link ID			
1	https://nptel.ac.in/courses/106102064			
2	https://ocw.mit.edu/courses/6-851-advanced-data-structures-spring-2012/			

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

•Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

PYTHON AND STATISTICAL MODELING LAB

Course Code	PCCDL308	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Lab

(Common to AD/CD/CR)

Course Objectives:

1. The course aims to familiarize students with basic Python concepts and data structures, model graphical representation of data, measures of central tendency and measures of dispersion. The course will also introduce students to use python in solving problems based on statistical distributions, regression analysis and correlation tests

Expt. No.	Experiments
1	Write a program to find the largest of three numbers.
2	Write a program to print the multiplication table of a number n.
3	Write a program to find Surface area and volume of a cylinder using function.
4	Write a program to replace a word by another word in a sentence.
5	Write a program to confirm the validity of an email id by verifying its format.
6	Write a program to remove every occurrence of a number from a list.
7	Write a program to add two matrices.
8	Write a program to read a tuple of numbers and print even tuple and odd tuple.
9	Create a dictionary with a set of book title and corresponding stock. Write a program to update the stock and to add or delete books.
10	A set of numbers are stored in a file. Write a program to print the prime numbers among them.
11	Write a program to count the number of words, sentences, upper case letters, lowercase letters and special symbols in a text stored in file.
12	Plot a graph $y = f(x)$
13	The areas of the various continents of the world (in millions of square miles) are as follows:11.7 for Africa; 10.4 for Asia; 1.9 for Europe; 9.4 for North America; 3.3 Oceania; 6.9 South America; 7.9 Soviet Union. Draw a bar chart representing the given data.
14	Draw the histogram of the following data:

	Heig	ht of student(m) 135 - 14	0 140	0 - 145	145-150	150-155	
	No.	of students	4		12	16	8	-
			n and murder ra Compute the n			_		_
		State	Populatio	n	Murde	r		
		Alabama	4,779,736		5.7			
		Alaska	710231		5.6			
15		Arizona	6,392,017	,	4.7			
		Arkansas	2,915,918		5.6			
	-	California	37,253,95	6	4.4			
	•	Colorado	5,029,196		2.8			
		Connecticut	3,574,097	,	2.4			
		Delaware	89,924		5.8			
	Calculate	the S.D. and co	efficient of var	iation (C	.V.) for	the followir	ng table:	
16	Class:	0-10 1	0-20 20-30	30-40	40-:	50 50-60	0 60-70 7	70-80
	Frequency	: 5 1	0 20	40	30	20	10 5	
17	attempt, w	hat is the proba	uted with 6 tria ability of: least one succes	-	orobabili	ty of succes	s equal to 0.2	25 at ea
		successes of at	least one succes	3				
	18	If the random P(X=6).	n variable X fo	llows a P	oisson d	istribution	with mean 3.4	1, find
18	19	report the hig survey is sur	mple of 395 pe ghest education nmarized in the 5% level of sig	level the following	ey obtair ng table.	ed. The dat	a that resulte	d from
			High Scho	Bach elors		last °s	Ph.D	T ot
			ol					al

		Fe	60	54	46	41	20
			00	54	40	41	
		m					1
		ale	40				10
		M	40	44	53	57	19
		ale					4
		То	100	98	99	98	39
		tal					5
		Calculate the c	correlation coe	efficient of the tw	vo variables show	vn in the table below	<i>'</i> .
		Person	Hand	Height			
	20	Α	17	150			
		B	15	154	_		
		C D	19 17	169 172	-		
		E	21	172	-		
		Suppose a			ks is random	nly selected off	the assembly line.
			-	-		•	G) of each truck is
	21					- ,	D equal to 3. The
							t- test of the null
		hypothesis		-	n 900 20 mi	or conduct a	
		• •	*		r all employ	vees at a comp	any was 3.8 on a
			-	• •		-	n a representative
		-		•		-	nagement. Do the
		-					roductivity in the
	22		-	-			higher than in the
		-			-		potheses for this
						•	-
		above.	JSC Statist	ical allalysis	sonware u	b test the hulf	hypothesis stated
			romonic	Aquation f.	r prodictin~	guatalia black	pressure from job
			-	-		•	n the future has a
			•			e	
		-			of estimate?	•	pressure predicted
			it is the sta	Job			
						ystolic	
				Satisfa	cu B	BP	
				on 24		104	_
	23			34		124	
				23		128	
				19		157	
				43		133	
				56		116	
				47		125	
				32		147	
				16		167	

				55	110		
				25	156		
	18	If the random P(X=6).	m variable X	follows a Po	sson distribu	tion with mea	in 3.4, find
		report the hi survey is su	ighest educati	on level they the following	obtained. Th table. Are ge	each person e data that res ender and edu	sulted from the
			High	Bachel	Master	Ph.D	Tota
			School	ors	s		1
	19	Fema	60	54	46	41	201
		le	00	54	40	41	201
		Mal	40	44	53	57	194
		e					
19		Tota 1	100	98	99	98	395
19		Tota 1	e correlation	coefficient of	the two vari	ables shown i	395 n the table bel
19	20	Tota 1	e correlation	coefficient of on I	the two vari	ables shown i Height	
19	20	Tota 1	e correlation	coefficient of on H	f the two vari	ables shown i	
19	20	Tota 1	e correlation Perso A	coefficient of on F 1 1	Ithe two vari Iand 7 5	ables shown i Height 150	
19	20	Tota 1	e correlation Perso A B	coefficient of on H 1 1 1	Image: The two varies Image: T	ables shown i Height 150 154	
9	20	Tota 1 Calculate th	e correlation A B C D E	coefficient of on H 1 1 1 1 1 1 2 2	E the two vari Iand 7 5 9 7 1	ables shown i Height 150 154 169 172 175	n the table bel
19	20	Calculate th Suppose a s	e correlation A B C D E ample of 16 l	coefficient of on F 1 1 1 1 2 ight trucks is	Ithe two varies Iand 7 5 9 7 1 randomly sel	ables shown i Height 150 154 169 172 175 ected off the	n the table bel
19		Tota 1 Calculate th Suppose a st The trucks a	e correlation Perso A B C D E ample of 16 line are driven 100	coefficient of on H 1 1 1 1 2 ight trucks is 00 miles and	E the two vari Iand 7 5 9 7 1 randomly sel the fuel mile	ables shown i Height 150 154 169 172 175 ected off the age (MPG) o	n the table bel
19	20	Calculate th Calculate th Suppose a sa The trucks a recorded. It	e correlation A B C D E ample of 16 fr are driven 100 is found tha	coefficient of on F 1 1 1 1 2 ight trucks is 00 miles and at the mean	The two vari Iand 7 5 9 7 1 randomly sel the fuel mile MPG is 22 val	ables shown i Height 150 154 169 172 175 lected off the age (MPG) o with a SD eq	n the table bel assembly line. f each truck is jual to 3. The
19		Tota 1 Calculate th Suppose a sare The trucks a recorded. It previous mode	e correlation Perso A B C D E ample of 16 line are driven 100 is found that odel of the line	coefficient of on F 1 1 1 1 2 ight trucks is 00 miles and at the mean	The two vari Iand 7 5 9 7 1 randomly sel the fuel mile MPG is 22 val	ables shown i Height 150 154 169 172 175 lected off the age (MPG) o with a SD eq	n the table bel
19		Tota 1 Calculate th Suppose a starecorded. It previous model hypothesis a	e correlation Perso A B C D E ample of 16 li are driven 100 is found that odel of the li at $p = 0.05$.	coefficient of on H 1 1 1 1 2 ight trucks is 00 miles and at the mean ght truck got	The two vari Iand 7 5 9 7 1 randomly sel the fuel mile MPG is 22 with 20 MPG. Compared	ables shown i Height 150 154 169 172 175 lected off the age (MPG) o with a SD eq onduct a t- to	n the table bel assembly line. f each truck is ual to 3. The est of the null
19		Tota 1 Calculate th Suppose a sare The trucks a recorded. It previous mode hypothesis a The mean pro-	e correlation Person A B C D E ample of 16 limits are driven 100 is found that odel of the limits at $p = 0.05$.	coefficient of on H 1 1 1 2 ight trucks is 00 miles and at the mean ght truck got	E the two vari Iand 7 5 9 7 1 randomly sel the fuel mile MPG is 22 w 20 MPG. C oyees at a con	ables shown i Height 150 154 169 172 175 lected off the age (MPG) o with a SD eq onduct a t- to	n the table bel assembly line. f each truck is jual to 3. The
19	21	Tota 1 Calculate th Calculate th Suppose a sare The trucks a recorded. It previous mode hypothesis a The mean proscale last yee employees fit	e correlation Perso A B C D E ample of 16 list are driven 100 is found that odel of the list at $p = 0.05$. oductivity ratin ar. This year rom the Huma	coefficient of on H 1 1 1 1 1 2 ight trucks is 00 miles and at the mean ght truck got ng for all emplyou get ratin in Research M	The two vari Iand 7 5 9 7 1 randomly sel the fuel mile MPG is 22 with 20 MPG. Compose at a compose set a compose set a compose set a compose from a representance	ables shown i Height 150 154 169 172 175 lected off the age (MPG) o with a SD eq onduct a t- to npany was 3.8 presentative san Do the data fro	n the table bel assembly line. f each truck is ual to 3. The est of the null on a five- point mple of fifteen om this sample
19		Tota 1 Calculate th Calculate th Suppose a sare The trucks a recorded. It previous mode hypothesis a The mean proscale last yee employees fin provide evide	e correlation Person A B C D E ample of 16 limits are driven 100 is found that odel of the limits at $p = 0.05$. oductivity rational are. This year room the Human ence that emple	coefficient of on H 1 1 1 1 2 ight trucks is 00 miles and at the mean ght truck got ng for all emplyou get ratin un Research M loyee product	E the two vari Iand 7 5 9 7 1 randomly sel the fuel mile MPG is 22 w 20 MPG. C oyees at a congs from a rep fanagement. I vity in the de	ables shown i Height 150 154 169 172 175 lected off the age (MPG) o with a SD eq onduct a t- to pany was 3.8 presentative sai Do the data fro partment of H	n the table bel assembly line. f each truck is jual to 3. The est of the null on a five- point mple of fifteen om this sample uman Resource
19	21	Tota 1 Calculate th Calculate th Suppose a sa The trucks a recorded. It previous mode hypothesis a The mean proscale last yee employees fip provide evide Management	e correlation Perso A B C D E ample of 16 limits are driven 100 is found that odel of the limits at $p = 0.05$. oductivity rational are that emploits is significantly	coefficient of on F 1 1 1 1 2 ight trucks is 00 miles and at the mean ght truck got ng for all empl you get ratin an Research M loyee producti y higher than	E the two vari Iand 7 5 9 7 1 randomly sel the fuel mile MPG is 22 variable 20 MPG. Consistence oyees at a consistence gs from a repr fanagement. In vity in the de in the comparison	ables shown i Height 150 154 169 172 175 lected off the age (MPG) o with a SD eq onduct a t- to pany was 3.8 resentative sam Do the data from partment of H ny as a whole?	n the table bel assembly line. f each truck is ual to 3. The est of the null on a five- point mple of fifteen om this sample

		statistical a job satisfa	analysis soft	ware. If one knows what is their systoli		I pressure from job future has a score on licted to be? What is
				Job Satisfaction	on Systolic BP	
				34	124	
	22			23	128	
	23			19	157	
				43	133	
				56	116	
				47	125	
				<u>32</u> 16	147 167	
				55	110	
				25	110	
		1		25	1.50	
	18	If the rand P(X=6).	lom variabl	e X follows a Poiss	son distribution with	h mean 3.4, find
		level of sig		owing table. Are gen	der and education lev	er dependent at 3%
			High Scho ol		Mast Ph. ers D	T o ta
	19		Scho ol	helo rs	ers D	o ta l
20	19	F	Scho	helo rs		o ta 1 2
20	19	e	Scho ol	helo rs	ers D	0 ta 1 2 0
20	19	e m	Scho ol	helo rs	ers D	o ta 1 2
20	19	e m al	Scho ol	helo rs	ers D	0 ta 1 2 0
20	19	e m al e	Scho ol 60	helo rs 54	ers D 46 41	0 ta 1 2 0
20	19	e m al	Scho ol	helo rs 54	ers D	o ta 1 2 0 1
20	19	e m al e M	Scho ol 60	helo rs 54	ers D 46 41	o ta 1 2 0 1 1
20	19	e m al e M al	Scho ol 60	helo rs 54 44	ers D 46 41	o ta 1 2 0 1 1 9
20	19	e m al e M al e	Scho ol 60 40	helo rs 54 44	ers D 46 41 53 57	o ta 1 2 0 1 1 9 4 3 9
20	19	e m al e M al e T ot al	Scho ol 60 40 100	helo rs 54 44 98	ers D 46 41 53 57 99 98	o ta 1 2 0 1 1 9 4 4 3 9 5
20	19	e m al e M al e T ot al	Scho ol 60 40 100	helo rs 54 44 98	ers D 46 41 53 57	o ta 1 2 0 1 1 9 4 4 3 9 5
20	19	e m al e M al e T ot al	Scho ol 60 40 100	helo rs 54 44 98	ers D 46 41 53 57 99 98	o ta 1 2 0 1 1 9 4 4 3 9 5

			d			
			d			
			1	150		
		A	7	150		
		В	1	154		
		В	5	154		
		C	1	169		
			9			
		D	1	172		
			7			
		E	2 1	175		
		Suppose a	sample of 1	6 light trucks is ran	domly selected off	the assembly line. The
	21	trucks are	driven 1000	miles and the fuel m	nileage (MPG) of ea	ch truck is recorded. It
	21				-	previous model of the
		-	-	. Conduct a t- test of		-
					· · ·	vas 3.8 on a five- point
					-	tive sample of fifteen
					-	data from this sample
	22	-				nt of Human Resource
		-	-			whole? Write the null
			itiva hvnotha	ses for this problem	Use statistical anal	ysis software to test the
				-		
		null hypoth	nesis stated a	bove.	a systelic blood pro	ssure from job
		null hypoth Obtain the	nesis stated a regression ed	bove. quation for predictin	•••	
		null hypothObtain thestatistical a	nesis stated a regression ec malysis softv	bove. quation for predictin vare. If one knows th	nat a subject in the f	uture has a score on job
		null hypothObtain thestatistical asatisfaction	nesis stated a regression ec malysis softv	bove. quation for predictin vare. If one knows th is their systolic bloc	nat a subject in the f	uture has a score on job
		null hypothObtain thestatistical asatisfaction	nesis stated a regression ec analysis softw n of 15, what	bove. quation for predictin vare. If one knows th is their systolic bloc	nat a subject in the f	uture has a score on job
		null hypothObtain thestatistical asatisfaction	nesis stated a regression ec analysis softw n of 15, what	bove. quation for predictin vare. If one knows th is their systolic bloc	nat a subject in the f	uture has a score on job
		null hypothObtain thestatistical asatisfaction	nesis stated a regression ec analysis softw n of 15, what	bove. quation for predictin vare. If one knows th is their systolic bloc ate?	hat a subject in the f od pressure predicted	uture has a score on job
		null hypothObtain thestatistical asatisfaction	nesis stated a regression ec analysis softw n of 15, what	bove. quation for predictin vare. If one knows th is their systolic bloc ate? Job Satisfactio n	at a subject in the f od pressure predicted Systolic	uture has a score on job
	22	null hypothObtain thestatistical asatisfaction	nesis stated a regression ec analysis softw n of 15, what	bove. quation for predictin vare. If one knows th is their systolic bloc ate? Job Satisfactio	Systolic BP 124	uture has a score on job
	23	null hypothObtain thestatistical asatisfaction	nesis stated a regression ec analysis softw n of 15, what	bove. quation for predictin vare. If one knows th is their systolic bloc ate? Job Satisfactio n 34 23	Systolic BP 124 128	uture has a score on job
	23	null hypothObtain thestatistical asatisfaction	nesis stated a regression ec analysis softw n of 15, what	bove. quation for predictin vare. If one knows the is their systolic block ate? Job Satisfactio n 34 23 19	Systolic BP 124 128 157	uture has a score on job
	23	null hypothObtain thestatistical asatisfaction	nesis stated a regression ec analysis softw n of 15, what	bove. quation for predictin vare. If one knows th is their systolic bloc ate? Job Satisfactio n 34 23 19 43	Systolic BP 124 128 157 133	uture has a score on job
	23	null hypothObtain thestatistical asatisfaction	nesis stated a regression ec analysis softw n of 15, what	bove. quation for predictin vare. If one knows th is their systolic bloc ate? Job Satisfactio n 34 23 19 43 56	Systolic BP 124 128 157 133 116	uture has a score on job
	23	null hypothObtain thestatistical asatisfaction	nesis stated a regression ec analysis softw n of 15, what	bove. quation for predictin vare. If one knows th is their systolic bloc ate? Job Satisfactio n 34 23 19 43 56 47	Systolic BP 124 128 157 133 116 125	uture has a score on job
	23	null hypothObtain thestatistical asatisfaction	nesis stated a regression ec analysis softw n of 15, what	bove. quation for predictin vare. If one knows th is their systolic bloc ate? Job Satisfactio n 34 23 19 43 56 47 32	Systolic BP 124 128 157 133 116 125 147	uture has a score on job
	23	null hypothObtain thestatistical asatisfaction	nesis stated a regression ec analysis softw n of 15, what	bove. quation for predictin vare. If one knows th is their systolic bloc ate? Job Satisfactio n 34 23 19 43 56 47 32 16	Systolic BP 124 128 157 133 116 125 147 167	uture has a score on job
	23	null hypothObtain thestatistical asatisfaction	nesis stated a regression ec analysis softw n of 15, what	bove. quation for predictin vare. If one knows th is their systolic bloc ate? Job Satisfactio n 34 23 19 43 56 47 32 16 55	Systolic BP 124 128 157 133 116 125 147 167 110	uture has a score on job
	23	null hypothObtain thestatistical asatisfaction	nesis stated a regression ec analysis softw n of 15, what	bove. quation for predictin vare. If one knows th is their systolic bloc ate? Job Satisfactio n 34 23 19 43 56 47 32 16	Systolic BP 124 128 157 133 116 125 147 167	uture has a score on job
	23	null hypoth Obtain the statistical a satisfaction standard en	nesis stated a regression ec analysis softw n of 15, what ror of estimation	bove. quation for predictin vare. If one knows th is their systolic bloc ate? Job Satisfactio n 34 23 19 43 56 47 32 16 55 25	Systolic BP 124 128 157 133 116 125 147 167 110 156	uture has a score on job d to be? What is the
		null hypoth Obtain the statistical a satisfaction standard en	nesis stated a regression ec analysis softw n of 15, what ror of estimation	bove. quation for predictin vare. If one knows th is their systolic bloc ate? Job Satisfactio n 34 23 19 43 56 47 32 16 55	Systolic BP 124 128 157 133 116 125 147 167 110 156	uture has a score on job d to be? What is the
21	23	null hypoth Obtain the statistical a satisfaction standard en	nesis stated a regression ec analysis softw n of 15, what ror of estimation	bove. quation for predictin vare. If one knows th is their systolic bloc ate? Job Satisfactio n 34 23 19 43 56 47 32 16 55 25	Systolic BP 124 128 157 133 116 125 147 167 110 156	uture has a score on job d to be? What is the
21		null hypoth Obtain the statistical a satisfaction standard er If the rand P(X=6).	hesis stated a regression ec analysis softw n of 15, what ror of estimation dom variable	bove. quation for predictin vare. If one knows th is their systolic bloc ate? Job Satisfactio n 34 23 19 43 56 47 32 16 55 25 e X follows a Poiss	Systolic BP 124 128 157 133 116 125 147 167 110 156	uture has a score on job d to be? What is the

	s	ummarize	ed in the	e following	table. Are get	nder and educat	ion level deper	ident at 5%
		evel of sig		-				
			T	Linh	Bachel	Master	Ph.D	То
				High School	ors	s	Pn.D	tal
		Fe		0	54	46	41	20
		mal						1
		e		0				10
		Ma le	4	0	44	53	57	19 4
		Tot	1	00	98	99	98	39
		al						5
	(Calculate	the corre	elation coef	ficient of the ty	wo variables sho	own in the table	below.
			TT					
		Pe	H a	Н				
		rs	n	ei				
		on	d	gh t				
			1					
		А	17	15				
		11	/	0				
20	,		1	15				
		В	5	4				
			1					
		С	9	16 9				
				9				
		D	1	17				
		D	7	2				
			2	17				
		E	1	17 5				
			1		t ton also is	domity and - + - 1	off the second	v line The
	t t		-	-		domly selected ileage (MPG) o		-
21						SD equal to 3.7		
		-	-			the null hypothe	-	
			-			vees at a compar from a represe	•	-
			-			nagement. Do 1	-	
22						ty in the depart		
	N	Manageme	ent is si	gnificantly	higher than in	the company a	us a whole? Wi	rite the null
					r this problem.	Use statistical a	nalysis softwar	e to test the
				ited above.	tion for mod	icting systolic	blood processor	from ich
23	ζ Ι		•	-	-	at a subject in th	-	
	6	anstrul	unur y 515	5510,010,1		a. a subject in ti	ie intuie nuo d c	

					ir systolic blo	ood pressure pre		What is the
		standard e	rror of es	timate?	h	Systolic		
					ntisfactio	BP		
					34	124		
					23	128		
					19	157		
					43	133		
					56 47	116		
					32	125 147		
					16	167		
					55	110		
					25	156		
	19	level of sig	gnificance	e? gh hool	Bachel ors 54	der and educatio Master s 46	Ph.D	To tal 20
		mal e Ma	40		44	53	57	1
22		le						4
		Tot	10	0	98	99	98	39
		al		ation - CC	alant - £ 1 ·	wo variables sho		5
		Calculate			icient of the tv	wo variables sho	own in the table	below.
		Person	Hand	Height				
			17	150				
	20	А	- /					
	20	В	15	154				
	20	B C	15 19	169	-			
	20	B C D	15 19 17	169 172	-			
	20	B C D E	15 19 17 21	169 172 175	trucks is ran	domly selected	off the assembl	v line The
	20	B C D E Suppose a trucks are	15 19 17 21 sample of driven 10	169 172 175 of 16 light 000 miles a	nd the fuel m	domly selected o ileage (MPG) o SD equal to 3. 7	f each truck is	recorded. It

	22	The mean productivity scale last year. This employees from the provide evidence that Management is signif and alternative hypoth null hypothesis stated	year you get ratings Human Research Ma employee productivi icantly higher than in eses for this problem. above.	from a represe nagement. Do the ty in the depart the company as Use statistical an	ntative sample he data from t ment of Huma s a whole? Wr nalysis softwar	e of fifteen his sample n Resource ite the null e to test the
		Obtain the regression of statistical analysis soft satisfaction of 15, what standard error of estir	tware. If one knows that is their systolic bloo	at a subject in th	e future has a s	core on job
			Job Satisfactio n	Systolic BP		
			34	124		
	23		23	128		
			19	157		
			43	133		
			56	116		
			47	125		
			32	147		
			16	167		
			55	110		
			25	156		
	18	If the random variab P(X=6).	le X follows a Poiss	on distribution	with mean 3.4	4, find
	19	A random sample of 3 the highest education summarized in the foll level of significance?	level they obtained. The lowing table. Are gene	ne data that resul	ted from the su	rvey is ent at 5%
			School Bachelors	Masters	Ph.D	Total
23		Female 60	54	46	41	201
		Male 40	44	53	57	194
		Total100Calculate the correlati	98	99	98	395
	20	PersHaHeigonndhtA17150B15154	on coefficient of the t			below.
		C 19 169				

21	Suppose a sample of 16 light trucks is randomly selected off the assembly line. The trucks are driven 1000 miles and the fuel mileage (MPG) of each truck is recorded. It is found that the mean MPG is 22 with a SD equal to 3. The previous model of the light truck got 20 MPG. Conduct a t- test of the null hypothesis at $p = 0.05$.						
22	The mean productivity rating for all employees at a company was 3.8 on a five- point scale last year. This year you get ratings from a representative sample of fifteen employees from the Human Research Management. Do the data from this sample provide evidence that employee productivity in the department of Human Resource Management is significantly higher than in the company as a whole? Write the null and alternative hypotheses for this problem. Use statistical analysis software to test the null hypothesis stated above.						
	Obtain the regression equivalent statistical analysis software job satisfaction of 15, what the standard error of estimate	e. If one knows that a tis their systolic blo	a subject in the futur	re has a score on			
		34	124				
		23	121				
23		19	157				
		43	133				
		56	116				
		47	125				
		32	147				
		16	167				
		55	110	4			
	1	25	156				

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Experiment with concepts of iteration, function, string and list	K3
CO2	Identify the importance of tuples, dictionary traversal, dictionary methods, files and operations	K3
CO3	Model graphical representation of data, measures of central tendency and measures of dispersion	К3
CO4	Solve problems based on Binomial distribution, Poisson distribution, sampling and regression analysis	K3
CO5	Make use of various correlation tests and utilize statistical analysis software	K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	V	V	V					V				V
CO2	V	V	V	V				V				V
CO3	V	V	V	V				V				V
CO4	V	V	V	V				V				V
CO5	V	V	V	V	V			V				٧

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books										
Sl. No	Title of the Book	Title of the BookName of the Author/s		Edition and Year							
1	Probability and Statistics for Engineering and the Sciences	Jay L Devore	Cengage Learning India	9/e, 2020							

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

•Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

- 1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)
 - Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.

- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

SEMESTER 4

ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

MATHEMATICS FOR COMPUTER AND INFORMATION SCIENCE-4

Course Code	GAMAT401	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	NIL	Course Type	Theory

(Group A)

Course Objectives:

1. To provide a comprehensive understanding of fundamental concepts of graph theory including paths, cycles, trees, graph algorithms, graph coloring and matrix representations, emphasizing their applications across various disciplines.

SYLLABUS

Module No.	Syllabus Description						
1	 Introduction to Graphs - Basic definition, Application of graphs, finite and infinite graphs, Incidence and Degree, Isolated vertex, Pendant vertex and Null graph. Isomorphism, Sub graphs, Walks, Paths and circuits, Connected graphs, Disconnected graphs and components. [Text 1: Relevant topics from sections 1.1, 1.2, 1.3, 1.4, 1.5, 2.1, 2.2, 2.4, 2.5. Proofs of theorems 2.5, 2.7 are excluded.] 	9					
2	 Euler graphs, Operations on Graphs, Hamiltonian paths and circuits, Travelling Salesman Problem, Connectivity, Edge connectivity, Vertex connectivity, Directed graphs, Types of directed graphs. [Text 1: Relevant topics from sections 2.6, 2.7, 2.8, 2.9, 2.10, 4.1, 4.2, 4.5, 9.1, 9.2. Proofs of theorems 4.6, 4.11, 4.12 are excluded.] 	9					
3	Trees- properties, Pendant vertices, Distance and centres in a tree, Rooted and binary trees, Counting trees, Spanning trees, Prim's algorithm and Kruskal's algorithm, Dijkstra's shortest path algorithm, Floyd-Warshall	9					

	shortest path algorithm.	
	[Text 1: Relevant topics from sections 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.10,	
	11.5. Proofs of theorems 3.10, 3.16 are excluded.]	
	Matrix representation of graphs- Adjacency matrix, Incidence Matrix, Circuit	
	Matrix, Path Matrix, Coloring, Chromatic number, Chromatic polynomial,	
4	Greedy colouring algorithm.	9
	[Text 1: Relevant topics from sections 7.1, 7.3, 7.8, 7.9, 8.1, 8.3. Proofs of theorems 7.4, 7.7, 7.8, 8.2, 8.3, 8.5, 8.6 are excluded.]	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Micro project	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the fundamental concepts of graph theory such as types of graphs, degree of a vertex, graph isomorphism, connectedness.	K2
CO2	Understand the concepts of Euler graphs, Hamiltonian graphs and connectivity.	K2
CO3	Apply Prim's and Kruskal's algorithms for finding minimum cost spanning tree and Dijkstra's and Floyd-Warshall algorithms for finding shortest paths.	К3
CO4	Illustrate various representations of graphs using matrices and apply vertex coloring in real life problems.	K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	-	-	-	-	-	-	-	-	2
CO2	3	3	2	-	-	-	-	-	-	-	-	2
CO3	3	3	2	2	-	-	-	-	-	-	-	2
CO4	3	3	2	2	-	-	-	-	-	-	-	2

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Graph Theory with Applications to Engineering and Computer Science	Narsingh Deo	Prentice Hall India Learning Private Limited	1st edition, 1979						

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Introduction to Graph Theory 2e	Douglas B. West	Pearson Education India	2nd edition, 2015
2	Introduction to Graph Theory	Robin J. Wilson	Longman Group Ltd.	5th edition, 2010
3	Graph Theory with Applications	J.A. Bondy and U.S.R. Murty	Elsevier Science Publishing Co., Inc	1976

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://onlinecourses.nptel.ac.in/noc22_ma10/preview					
2	https://onlinecourses.nptel.ac.in/noc22_ma10/preview					
3	https://onlinecourses.nptel.ac.in/noc21_cs48/preview					
4	https://onlinecourses.nptel.ac.in/noc21_cs48/preview					

DATABASE MANAGEMENT SYSTEMS

(Common to CS/CD/CA/CR/AD/AI/CB/CN/CC/CU/CI/CG)

Course Code	PCCST402	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCST303	Course Type	Theory

Course Objectives:

- 1. Equip the students with a comprehensive understanding of fundamental DBMS concepts as well as the principles and applications of NoSQL databases
- 2. Enable students to design, implement, and manage both relational and NoSQL databases

SYLLABUS

Module No.	Syllabus Description	
	Introduction to Databases :- Database System Concepts and Architecture-	
	Data Models, Schemas and Instances, Three-Schema Architecture and Data	
	Independence, Database Languages and Interfaces, Centralized and	
1	Client/Server Architectures for DBMSs.	
1	Conceptual Data Modelling and Database Design:- Data Modelling Using the	11
	Entity, Relationship (ER) Model - Entity Types, Entity Sets, Attributes, and Keys,	
	Relationship Types, Relationship Sets, Roles, and Structural Constraints, Weak	
	Entity Types. Refining the ER Design for the COMPANY Database.	
	The Relational Data Model and SQL - The Relational Data Model and Relational	
	Database Constraints-Relational Algebra and Relational Calculus - Structured	
2	Query Language (SQL)-Data Definition Language, Data Manipulation Language,	
	Assertions, Triggers, views, Relational Database Design Using ER-to-Relational	11
	Mapping.	
	Database Design Theory & Normalization - Functional Dependencies -	
	Basic definition; Normalization- First, Second, and Third normal forms.	
3	Transaction Management - Transaction Processing : Introduction, problems and	11
	failures in transaction, Desirable properties of transaction, Characterizing	
	schedules based on recoverability and serializability; Concurrency Control	

	with Two-Phase Locking Techniques- Database Recovery management:				
	Deferred update-immediate update- shadow paging.				
	Introduction To NoSQL Concepts - types of NoSQL databases- CAP				
4	Theorem- BASE properties- Use Cases and limitations of NoSQL.				
4	SQL architectural Patterns - Key value Stores, Graph Stores, Column	11			
	Family stores and Document Stores.				

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Micro project	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

At the end of the course, students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Summarize and exemplify the fundamental nature and characteristics of database systems	K2
CO2	Model and design solutions for efficiently representing data using the relational model or non-relational model	K3
CO3	Discuss and compare the aspects of Concurrency Control and Recovery in Database systems	К3
CO4	Construct advanced SQL queries to effectively retrieve, filter, and manipulate data from relational databases.	К3
CO5	Experiment with NoSQL databases in real world applications	K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3	3						2	2	3
CO3	3	3	3	3								3
CO4	3	3	3	3								3
CO5	3	3	3	3								3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Fundamentals of Database Systems [Module 1,2,3,4]	Elmasri, Navathe	Pearson	7/e,		
2	Making the Sense of NoSQL : A guide for Managers and rest of us [Module 4]	Dan McCreary and Ann Kelly	Manning	2014		

	Reference Books					
Sl. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year		
1	A., H. F. Korth and S. Sudarshan, Database System Concepts,	Sliberschatz A., H. F. Korth and S. Sudarshan, Database System Concepts, 6/e, McGraw Hill, 2011.	McGraw Hill,	7/e, 2011		
2	Beginning Database Design Solutions	Rod Stephens	Wiley	2/e, 2023		
2	NoSQL Distilled	Pramod J. Sadalage, Martin Fowler	Addison- Wesley	1/e, 2012		
3	NoSQL Data Models: Trends and Challenges (Computer Engineering: Databases and Big Data),	Olivier Pivert	Wiley	2018		

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://onlinecourses.nptel.ac.in/noc21_cs04/preview				
2	https://onlinecourses.nptel.ac.in/noc21_cs04/preview				
3	https://onlinecourses.nptel.ac.in/noc21_cs04/preview				
4	https://archive.nptel.ac.in/courses/106/104/106104135/				

OPERATING SYSTEMS

(Common to CS/CD/CM/CR/CA/AD/AI/CB/CN/CC/CU/CI/CG)

Course Code	PCCST403	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To introduce the structure of a typical operating system and its core functionalities
- **2.** To impart to the students, a practical understanding of OS implementation nuances based on the Linux operating system

Module No.	Syllabus Description				
	Introduction to Operating Systems (Book 1 Ch 2 introductory part),				
	Operating System Services (Book 3 Ch 2) Overview of Operating Systems				
	and Kernels, Linux Versus Classic Unix Kernels (Book 2 Ch 1)				
	Process concepts: Process Creation, Process States, Data Structures, Process				
	API (Book 1 Ch 4, 5), Sharing processor among processes - user and kernel				
	modes, context switching (Book 1 Ch 6), System boot sequence (Book 3 Ch				
	2)				
	Case study: Linux kernel process management (Book 2, Ch 3)				
1	Threads and Concurrency : Concept of a thread, Multithreading benefits, Multithreading models (Book 3 Ch 4)	11			
	Case study: The Linux Implementation of Threads (Book 2, Ch 3)				
	Process scheduling: Concepts and basic algorithms (Book 1 Ch 7), The				
	Multilevel Feedback Queue: Basic Rules (Book 1 Ch 8)				
	Case study: The Linux Completely Fair Scheduler (CFS) (Book 1 Ch 9, Implementation with RB trees not required), The Linux Scheduling Implementation,				

	$\mathbf{D}_{\mathbf{n}} = \mathbf{D}_{\mathbf{n}} + $	
	Preemption and Context Switching (Book 2, Ch 4)	
2	 Concurrency and Synchronization - Basic principles (Book 3 Sections 6.1, 6.2), Mechanisms - Locks: The Basic Idea, Building Spin Locks with Test-And-Set, Compare and Swap, Using Queues: Sleeping Instead Of Spinning (Book 1 Ch 28), Semaphores - Definition, Binary Semaphores, The Producer/Consumer (Bounded Buffer) Problem and its solution using semaphores, Reader-Writer Locks (Book 1 Ch 31) <i>Case study: Linux Kernel Synchronization Methods - Spin Locks, Semaphores, Mutexes (Book 2 Ch 10)</i> Concurrency: Deadlock and Starvation - Deadlock Characterization, Deadlock Prevention and Avoidance, Deadlock Detection and recovery (Book 3 Ch 8), Dining Philosophers Problem and its solution (Book 1 Ch 31) 	12
3	 Memory management - Address Space, Memory API, Address Translation - An Example, Dynamic (Hardware-based) Relocation, Segmentation: Generalized Base/Bounds, Address translation in segmentation, Support for Sharing (Book 1 Ch 13 to 16) Virtual memory - Paging: Introduction, page tables and hardware support, TLBs, Example: Accessing An Array, - TLB hits and misses, Handling TLB misses, TLB structure, Reducing the page table size (Book 1 Ch 18 to 20) Going beyond physical memory - Swap space, page fault and its control flow, page replacement policies, Thrashing (Book 1 Ch 21, 22) 	11
4	 I/O system: Modern System architecture, Programmed I/O, Interrupts, DMA, Device interaction methods, The Device Driver (Book 1 Ch 36), Hard disk: Geometry (Book 1 Ch 37), disk scheduling (Book 3 Section 11.2) <i>Case study: Linux I/O schedulers - Elevator, Complete Fair Queuing (Book 2 Ch 14)</i> Files and Directories: The File System Interface - File descriptor, reading and writing files (sequential and random access), Removing files - Hard links and Symbolic links, Creating, reading and deleting directories, Permission bits and Access Control Lists, Mounting a file system (Book 1 Ch 39) 	10

File Organization: The Inode, The Multi-Level Index (Book 1 Ch 40)

Case study: VFS Objects and Their Data Structures - The Inode Object, Inode Operations (Book 2 Ch 13)

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Micro project	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub-	
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Apply the concepts of process management and process scheduling mechanisms employed in operating systems.	К3
CO2	Choose various process synchronization mechanisms employed in operating systems.	К3
CO3	Use deadlock prevention and avoidance mechanisms in operating systems.	К3
CO4	Select various memory management techniques in operating systems.	К3
C05	Understand the storage management in operating systems.	К2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3
CO5	3	3	3									3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Operating Systems: Three Easy Pieces	Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau	CreateSpace	1/e, 2018			
2	Linux Kernel Development	Robert Love	Pearson	3/e, 2018			
3	Operating System Concepts	Abraham Silberschatz, Peter B. Galvin, Greg Gagne	Wiley	10/e, 2018			

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Modern Operating Systems	Andrew S. Tanenbaum Herbert Bos	Pearson	5/e, 2012				
2	The Design of the UNIX Operating System	Maurice J. Bach	Prentice Hall of India	1/e, 1994				
3	The Little Book of Semaphores	Allen B. Downey	Green Tea Press	1/e, 2016				

	Video Links (NPTEL, SWAYAM)					
No.	No. Link ID					
1	https://archive.nptel.ac.in/courses/106/105/106105214/					
2	https://www.youtube.com/playlist?list=PLDW872573QAb4bj0URobvQTD41IV6gRkx					

COMPUTER ORGANIZATION AND ARCHITECTURE

(Common to CS/CD/CR/CA/AD/CB/CN/CC/CU/CG)

Course Code	PBCST404	CIE Marks	60
Teaching Hours/Week (L: T:P: R)	3:0:0:1	ESE Marks	40
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	GAEST305	Course Type	Theory

Course Objectives

- 1. Introduce principles of computer organization and the basic architectural concepts using RISC.
- 2. Introduce the concepts of microarchitecture, memory systems, and I/O systems.

SYLLABUS

Module No.	Syllabus Description	Contact Hours				
	Basic Structure of computers:- Functional units - Basic operational					
	concepts; Memory map; Endianness.					
	CISC vs RISC architectures:- RISC Introduction - Assembly Language,					
	Assembler directives, Assembling.					
1	Programming concepts - Program flow, Branching, Conditional statements,	11				
	Loops, Arrays, Function calls; Instruction execution cycle.					
	Machine language - Instructions, addressing modes, Stored program					
	concept. Evolution of the RISC Architecture.					
	Microarchitecture - Introduction; Performance analysis; Single-Cycle					
	Processor - Single Cycle Datapath, Single Cycle Control; Pipelined					
2	Processor - Pipelined Data Path, Pipelined Control: Hazards, Solving	11				
	Data/Control Hazards, Performance Analysis.					
	Memory Systems: Introduction; performance analysis; Caches - basic					
	concepts, Cache mapping, Cache replacement, Multiple-Level Caches,					
3	Reducing Miss Rate, Write Policy; Virtual Memory - Address Translation;	11				
	Page Table; Translation Lookaside Buffer; Memory Protection.					

	Input / Output - External Devices; I/O Modules; Programmed I/O,	
4	Interrupt Driven I/O; Direct Memory Access; Embedded I/O Systems -	11
	Embedded I/O, General Purpose I/O, Serial I/O, Other Peripherals.	

Suggestion on Project Topics

Use simulators such as Ripes (https://github.com/mortbopet/Ripes) / GEM5 (https://www.gem5.org/) implement components of computer systems such as Various Cache organization and study the effect, Solutions to hazards, TLBs.

Course Assessment Method (CIE: 60 marks, ESE: 40 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Project	Internal Ex-1	Internal Ex-2	Total
5	30	12.5	12.5	60

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• 2 questions will be given from each module,	
module.	out of which 1 question should be answered.	
• Total of 8 Questions,	• Each question can have a maximum of 2	
each carrying 2 marks	subdivisions.	40
(8x2 =16 marks)	• Each question carries 6 marks.	
	(4x6 = 24 marks)	

At the end of the course students should be able to:

	Course Outcome					
C01	Identify the basic structure and functional units of a digital computer and the features of RISC architecture.	K2				
CO2	Experiment with the single cycle processor, pipelining, and the associated problems.	К3				
CO3	Utilize the memory organization in modern computer systems.	K3				
CO4	Experiment with the I/O organization of a digital computer.	K3				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3	3								3
CO3	3	3	3	3								3
CO4	3	3	3	3								3

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Digital Design and Computer Architecture - RISC-V Edition	Sarah L. Harris, David Harris	Morgan Kaufmann	1/e, 2022				
2	Computer Organization and Architecture Designing for Performance	William Stallings	Pearson	9/e, 2013				

	Reference Books							
Sl. No	Title of the Book	Name of the Publisher	Edition and Year					
1	Computer Organization and Design : The Hardware/Software Interface: RISC-V Edition	David A. Patterson John L. Hennessy	Morgan Kaufaman	1/e,2018				
2	Computer Organization and Embedded Systems	Carl Hamacher, Zvonko Vranesic, Safwat Zaky, Naraig Manjikian	McGraw Hil	6/e, 2012				
3	Modern Computer Architecture and Organization	Jim Ledin	Packt Publishing	1/e,2020				

	Video Links (NPTEL, SWAYAM)						
No.	No. Link ID						
1	https://archive.nptel.ac.in/courses/106/105/106105163/						
2	https://archive.nptel.ac.in/courses/106/106106166/						

PBL Course Elements

L: Lecture	R:	R: Project (1 Hr.), 2 Faculty Members					
(3 Hrs.)	Tutorial	Practical	Presentation				
Lecture delivery	Project identification	Simulation/ Laboratory Work/ Workshops	Presentation (Progress and Final Presentations)				
Group discussion	Project Analysis	Data Collection	Evaluation				
Question answer Sessions/ Brainstorming Sessions	Analytical thinking and self-learning	Testing	Project Milestone Reviews, Feedback, Project reformation (If required)				
Guest Speakers (Industry Experts)	Case Study/ Field Survey Report	Prototyping	Poster Presentation/ Video Presentation: Students present their results in a 2 to 5 minutes video				

Assessment and Evaluation for Project Activity

Sl. No	Evaluation for	Allotted Marks
1	Project Planning and Proposal	5
2	Contribution in Progress Presentations and Question Answer Sessions	4
3	Involvement in the project work and Team Work	3
4	Execution and Implementation	10
5	Final Presentations	5
6	Project Quality, Innovation and Creativity	3
	Total	30

1. Project Planning and Proposal (5 Marks)

- Clarity and feasibility of the project plan
- Research and background understanding
- Defined objectives and methodology

2. Contribution in Progress Presentation and Question Answer Sessions (4 Marks)

- Individual contribution to the presentation
- Effectiveness in answering questions and handling feedback

3. Involvement in the Project Work and Team Work (3 Marks)

- Active participation and individual contribution
- Teamwork and collaboration

4. Execution and Implementation (10 Marks)

- Adherence to the project timeline and milestones
- Application of theoretical knowledge and problem-solving
- Final Result

5. Final Presentation (5 Marks)

- Quality and clarity of the overall presentation
- Individual contribution to the presentation
- Effectiveness in answering questions

6. Project Quality, Innovation, and Creativity (3 Marks)

- Overall quality and technical excellence of the project
- Innovation and originality in the project
- Creativity in solutions and approaches

SOFTWARE ENGINEERING

(Common to CS/CD/CM/CR/CA/AD/AM/CB/CN/CU/CI)

Course Code	PECST411	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- To Provide fundamental knowledge in the Software Development Process including Software Development, Object Oriented Design, Project Management concepts and technology trends.
- 2. To enable the learners to apply state of the art industry practices in Software development.

Module No.	Syllabus Description	Contact Hours
1	Introduction to Software Engineering and Process Models - Software	9
	engineering, Software characteristics and types, Layers of Software Engineering-Process, Methods, Tools and Quality focus. Software Process models – Waterfall, Prototype, Spiral, Incremental, Agile model – Values and Principles.	
	Requirement engineering - Functional, Non-functional, System and User requirements. Requirement elicitation techniques, Requirement validation, Feasibility analysis and its types, SRS document characteristics and its structure. <i>Case study:</i> SRS for College Library Management Software	
2	Software design - Software architecture and its importance, Software architecture patterns: Component and Connector, Layered, Repository, Client-Server, Publish-Subscribe, Functional independence – Coupling and Cohesion <i>Case study:</i> Ariane launch failure Object Oriented Software Design - UML diagrams and relationships– Static and dynamic models, Class diagram, State diagram, Use case diagram, Sequence diagram <i>Case Studies</i> : Voice mail system, ATM Example	9

SYLLABUS

	Software pattern - Model View Controller, Creational Design Pattern types –	
	Factory method, Abstract Factory method, Singleton method, Prototype	
	method, Builder method. Structural Design Pattern and its types - Adapter,	
	Bridge, Proxy, Composite, Decorator, Façade, Flyweight. Behavioral Design	
	Pattern	
	Coding, Testing and Maintenance:	
	Coding guidelines - Code review, Code walkthrough and Code inspection,	
3	Code debugging and its methods.	
	Testing - Unit testing, Integration testing, System testing and its types, Black	
	box testing and White box testing, Regression testing	
	Overview of DevOps and Code Management - Code management, DevOps	9
	automation, Continuous Integration, Delivery, and Deployment (CI/CD/CD),	
	<i>Case study</i> – Netflix.	
	Software maintenance and its types- Adaptive, Preventive, Corrective and	
	Perfective maintenance. Boehm's maintenance models (both legacy and non-	
	legacy)	
	Software Project Management - Project size metrics – LOC, Function points	
	and Object points. Cost estimation using Basic COCOMO.	
	Risk management: Risk and its types, Risk monitoring and management model	
	Software Project Management - Planning, Staffing, Organizational structures,	
	Scheduling using Gantt chart. Software Configuration Management and its	
4	phases, Software Quality Management - ISO 9000, CMM, Six Sigma for	9
	software engineering.	
	Cloud-based Software -Virtualisation and containers, Everything as a service	
	(IaaS, PaaS), Software as a service. Microservices Architecture - Microservices,	
	Microservices architecture, Microservice deployment.	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Micro project	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome			
CO1	Plan the system requirements and recommend a suitable software process model	К3		
CO2	Model various software patterns based on system requirements	K3		
CO3	Apply testing and maintenance strategies on the developed software product to enhance quality	К3		
CO4	Develop a software product based on cost, schedule and risk constraints	К3		

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Software Engineering: A practitioner's approach	Roger S. Pressman	McGraw-Hill International edition	8/e, 2014				
2	Software Engineering	Ian Sommerville	Addison-Wesley	10/e, 2015				
3	Design Patterns, Elements of Reusable Object Oriented Software	Erich Gamma,Richard Helm, Ralph Johnson,John Vlissides	Pearson Education Addison-Wesley	1/e, 2009				

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Pankaj Jalote's Software Engineering: With Open Source and GenAI	Pankaj Jalote	Wiley India	1/e, 2024			
2	Software Engineering: A Primer	Waman S Jawadekar	Tata McGraw-Hill	1/e, 2008			
3	Object-Oriented Modeling and Design with UML	Michael Blaha, James Rumbaugh	Pearson Education.	2/e, 2007			
4	Software Engineering Foundations : A Software Science Perspective	Yingux Wang	Auerbach Publications	1/e, 2008			
5	Object-Oriented Design and Patterns	Cay Horstmann	Wiley India	2/e, 2005			
6	Engineering Software Products: An Introduction to Modern Software Engineering	Ian Sommerville	Pearson Education	1/e, 2020			

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://www.youtube.com/watch?v=Z6f9ckEElsU					
2	https://www.youtube.com/watch?v=1xUz1fp23TQ					
3	http://digimat.in/nptel/courses/video/106105150/L01.html					
4	https://www.youtube.com/watch?v=v7KtPLhSMkU					

DATA SCIENCE PRIVACY & ETHICS

(Common to AD/CR)

Course Code	PEADT412	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To understand the fundamental principles of data ethics and privacy.
- 2. To analyze real-world cases involving data privacy and ethical issues.
- 3. To develop skills to implement ethical practices in data science projects.
- 4. To learn about legal frameworks governing data privacy.

Module No.	Syllabus Description	Contact Hours
	Data & Risks:-	
	Data access and analysis – Risk mitigation – Risks, Harms and Benefit	
	assessment – Sensitive data – Sensitive contexts – Data security – Data	
1	Retention;	9
	Data Ethics – the importance of data ethics –Privacy, transparency, fairness	
	and bias, accountability, security, data quality; Data collection – The ethical	
	use of data.	
	Data Privacy:	
	Introduction to Data privacy - History of privacy, Degrees of privacy,	
	Modern privacy risks, Anonymity; Data validity – Choice of Attributes and	
	Measures; Errors in Data Processing – Errors in Model Design, Algorithmic	
2	Fairness.	9
	Data ownership; Data Integrity - Biased and Unbiased data, Fairness; Five	
	C's of data; Anonymization; Key issues in Data ethics; Open data usage -	
	Features and characteristics.	
	Database Security and Analytics :-	0
3	Relational databases; Database features; Metadata - Importance, Descriptive	9

	and structural metadata, Schemas, Metadata management; Common security challenges- Human error, SQL injection attacks, DDoS, Malware attacks; Prevention methods- Access control, Auditing, Authentication, Encryption,	
4	Integrity controls, Backups. Ethics and Data Protection :- Government regulatory frameworks – Data Protection laws- GDPR, CCPA, Security standards; Data retention policies - GDPR retention policy, 7 year retention policy; Compliance and audits; International standards - ISO/IEC standard; Real world case studies.	9

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome			
CO1	Understand Ethical Data Collection and Usage.	K2		
CO2	Understand Ethical Principles in Data Science.	K2		
CO3	CO3 Identify Data Privacy Issues.			
CO4	Illustrate Legal and Regulatory Frameworks.	К3		
CO5	Identify Real-World privacy and ethics violation Cases.	К3		
C05	Identify Real-World privacy and ethics violation Cases.			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2				2		2				3
CO2	2	2				2		2				3
CO3	3	2	2			2		2				3
CO4	3	2	2			2		2				3
CO5	3	2	2			2		2				3

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Ethics and Data Science	Mike Loukides, Hilary Mason, and DJ Patil	O'Reilly Media	1/e, 2018		
2	Data Privacy: Principles and Practice	Nataraj Venkataramanan and Ashwin Shriram	CRC Press	1/e, 2017		
3	The Ethical Algorithm: The Science of Socially Aware Algorithm Design	Michael Kearns and Aaron Roth	Oxford University Press	1/e, 2019		

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Data Privacy Law A Practical Guide to the GDPR	G.E. Kennedy , L.S.P. Prabhu,	G.E. Kennedy & L.S.P. Prabhu	3/e, 2020		

Video Links (NPTEL, SWAYAM)					
No. Link ID					
1	Online Privacy				
	: https://onlinecourses.nptel.ac.in/noc22_cs37/preview				
Towards an Ethical Digital Society- From Theory to Practice:					
2	https://onlinecourses.nptel.ac.in/noc21_hs55/preview				

FUNCTIONAL PROGRAMMING

(Common to CS/CD/CM/CR/CA/AD/AM/CB/CN/CU/CG)

Course Code	PECST413	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	GYEST204	Course Type	Theory

Course Objectives:

- **1.** To enable the learner write programs in a functional style and reason formally about functional programs;
- 2. To give the concepts of polymorphism and higher-order functions in Haskell to solve the

Module No.	Syllabus Description	Contact Hours
1	Introducing Functional Programming; Getting Started with Haskell and GHCi; Basic Types and Definitions; Designing and Writing Programs; Data Types, Tuples and Lists. [Text Ch. 1, 2, 3, 4, 5]	9
2	Programming with Lists; Defining Functions over Lists; Playing the Game: I/O in Haskell; Reasoning about Programs; [Text Ch. 6, 7, 8, 9]	9
3	Generalization: Patterns of Computation; Higher-order Functions; Developing Higher-order Programs; Overloading, Type Classes and Type Checking. [Text Ch. 10 11, 12, 13]	9
4	Algebraic Types; Case Study - Huffman Codes; Abstract Data Types; Lazy Programming; Time and Space Behaviour. [Text Ch. 15, 16, 17, 20]	9

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome		
CO1	Write computer programs in a functional style.	К2	
CO2	Reason formally about functional programs and develop programs using lists.	К3	
CO3	Use patterns of computation and higher-order functions.	К3	
CO4	Reason informally about the time and space complexity of programs.	К3	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Ou	utcomes to Program Outcomes)
--	------------------------------

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2			3							3
CO2	3	3	3		3							3
CO3	3	3	3		3							3
CO4	3	3	3		3							3

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	HASKELL : The Craft of Functional Programming	Simon Thompson	Addison Wesley	3/e, 2023					

	Reference Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Thinking Functionally with Haskell	Richard Bird	Cambridge University Press	1/e, 2015						
2	Programming in Haskell	Graham Hutton	Cambridge University Press	2/e, 2023						
3	Real World Haskell	Bryan O'Sullivan, John Goerzen, Donald Bruce Stewart	O'Reilly	1/e, 2008						

	Video Links (NPTEL, SWAYAM)					
No.	Link ID					
1	https://archive.nptel.ac.in/courses/106/106106137/					

FUNDAMENTALS OF BIOINFORMATICS

(Common to AD/CR)

Course Code	PEADT414	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To understand the fundamental concepts in Molecular Biology, Genomics, Proteomics and Modelling.
- 2. To introduce bio macromolecules such as genes and proteins, different biological databases, and tools and algorithms for biological data processing, analysis and interpretation, and the elements of the systems approach to Molecular Biology.

Module	Syllabus Description	Contact Hours
1	Molecular Biology Primer (3 hours)Genes, DNAs, RNAs, Proteins, Genomics, Sequencing techniques,Bioinformatics overview and scopeSequence Alignment (6 hours)Global and local sequence alignment-dynamic programming algorithms, editdistance, similarity, Needleman Wunsch Algorithm, Smith WatermanAlgorithm	9
2	 Biological Databases and Data Formats (3 hours) Genomic and Sequence Data Formats, GenBank, EMBL-Bank, and DDBJ, PROSITE, NCBI- Database Searching: BLAST, FASTA Phylogenetics (6 hours) Phylogenetic Tree basics and Construction Methods, UPGMA, Neighbour joining, Parsimonous trees, Additive trees, Bootstrapping 	9
3	Combinatorial Pattern Matching (9 hours) Combinatorial Pattern Matching, Repeat finding, Keyword Trees, Suffix	9

		Trees, Heuristic similarity search algorithms, Approximate Pattern Matching	
		R FOR BIOINFORMATICS	
		Variables, Data types, control flow constructs, String manipulation, Pattern	
	4	Matching, arrays, lists and hashes, File handling, Programs to handle	9
	4	biological data and parse output files for interpretation, packages for sequence	
		alignment, FASTA, BLAST (Bioconductor, msa, Biostrings etc.)	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total	
5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	00
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the Basics of Bioinformatics	K2
CO2	Use various biological databases and apply sequence alignment techniques	К3
CO3	Use molecular phylogenetics to identify evolutionary relationships among various biological species	К3
CO4	Apply the concept of combinatorial pattern matching in bioinformatics	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									2
CO2	3	3	3									2
CO3	3	3	3									2
CO4	3	3	3									2

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	An Introduction to Bioinformatics Algorithms,	N. C. Jones and P. A. Pevzner,	MIT Press, 2004	1/e, 2004					
2	Bioinformatics for Beginners: Genes, Genomes, Molecular Evolution, Databases and Analytical Tools	Supratim Choudhuri	Academic Press	1/e, 2014					

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Introduction to Bioinformatics	T. K. Attwood and D. J. Parry-Smith,	Pearson Education	1/e, 2003				
2	Analysis of Biological Networks,	B. Junker and F. Schreiber,	Wiley Publishers	1/e, 2007				
3	Heterogeneous Information Networks - Principles & Methodologies	Y. Sun and J. Han, Mining	Morgan & Claypool Publishers	1/e, 2012				
4	Multilayer Social Networks,	M. E. Dickison et al,	Cambridge University Press	1/e, 2016				

	Video Links (NPTEL, SWAYAM)					
No.	No. Link ID					
1	https://archive.nptel.ac.in/courses/102/106/102106065/					
2	https://onlinecourses.swayam2.ac.in/cec21_bt04/preview					

NUMBER THEORY

(Common to AD/CR)

Course Code	PEADT416	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To provide the basic concepts of divisibility and prime numbers.
- 2. To enable the learners develop problem-solving skills in the context of number theory.

Module No.	Syllabus Description					
1	Fundamentals - Polygonal numbers, Pyramidal numbers, Catalan numbers; Divisibility-Division algorithm, Number patterns, Prime and composite numbers, Fibonacci and Lucas numbers, Fermat numbers; Greatest common divisors - Greatest common divisor, Euclidean algorithm, Least Common Multiple, Linear Diophantine Equations.	9				
2	Congruences – Congruences (Basics only), Linear congruences; Congruence Applications - divisibility tests, Modular designs, Check digits; Systems of Linear Congruences- Chinese remainder theorem, General Linear systems, 2x2 Linear systems; Wilson's theorem; Fermat's little theorem (Theorem and proof of theorem only).	9				
3	Multiplicative Functions – Euler's Phi Function, Euler's Theorem, Tau and sigma function, Perfect numbers, Mersenne Primes; Primitive Roots- Order of a positive integer, Primality tests, Primitive roots of primes, Composites with primitive roots.	9				
4	Cryptology - Affine ciphers, Hill ciphers, Exponentiation ciphers, RSA CryptoSystem, Knapsack Ciphers.	9				

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Illustrate the operations and properties of integer arithmetic.	K2
CO2	Use the concepts of prime numbers and factorization.	K2
CO3	Solve Diophantine equations and congruences.	К3
CO4	Use the concepts of the order of a positive integer, primality tests, and primitive roots of primes for ensuring security in computing systems.	К3
CO5	Illustrate classical theorems of Number theory and Apply number theory to ciphers.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	3	-	-	-	-	-	-	-	3
CO2	3	3	2	2	-	-	2	-	-	-	-	3
CO3	3	3	2	2	-	-	2	-	-	-	-	3
CO4	3	3	2	2	-	-	-	-	-	-	-	3
CO5	2	2	-	2	2	-	-	-	-	-	-	3

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Elementary Number Theory with Applications	Thomas Koshy	Elsevier Academic Press	2/e, 2007			

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Elementary Number Theory	ry David M Burton McGrav		7/e, 2011				
2	Elementary Number Theory	Gareth A Jones, J Mary Jones	Springer	1/e, 1998				
3	Elementary Number Theory	Kenneth H Rosen	Pearson Education	6/e, 2015				

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	1 https://archive.nptel.ac.in/course.html					
2	https://archive.nptel.ac.in/courses/111/101/111101137/					

SOFT COMPUTING

(Common to CS/CD/CM/CR/CA/AD/AI/AM/CB/CN/CI)

Course Code	PECST417	CIE Marks	40
Teaching Hours/Week (L:T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- **1.** To give exposure on soft computing, various types of soft computing techniques, and applications of soft computing
- **2.** To impart solid foundations on Neural Networks, its architecture, functions and various algorithms involved, Fuzzy Logic, various fuzzy systems and their functions, and Genetic algorithms, its applications and advances.

Module No.	Syllabus Description	Contact Hours
1	Introduction to Soft Computing. Difference between Hard Computing & Soft Computing. Applications of Soft Computing. Artificial Neurons Vs Biological Neurons. Basic models of artificial neural networks – Connections, Learning, Activation Functions. McCulloch and Pitts Neuron. Hebb network, Perceptron Networks– Learning rule, Training and testing algorithm. Adaptive Linear Neuron– Architecture, Training and testing algorithm.	10
2	 Fuzzy logic, Fuzzy sets – Properties, Fuzzy membership functions, Features of Fuzzy membership functions. operations on fuzzy set. Linguistic variables, Linguistic hedges Fuzzy Relations, Fuzy If-Then Rules, Fuzzification, Defuzzification– Lamda cuts, Defuzzification methods. Fuzzy Inference mechanism - Mamdani and Sugeno types. 	9
3	Evolutionary Computing, Terminologies of Evolutionary Computing, Concepts of genetic algorithm. Operators in genetic algorithm - coding, selection, cross over, mutation. Stopping condition for genetic algorithm.	8

	Multi-objective optimization problem. Principles of Multi- objective optimization, Dominance and pareto-optimality. Optimality conditions.	
4	Collective Systems, Biological Self-Organization, Particle Swarm	9
	Optimization, Ant Colony Optimization, Swarm Robotics.	

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0)
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
C01	Describe the techniques used in soft computing and outline the fundamental models of artificial neural networks	K2
CO2	Solve practical problems using neural networks	К3
CO3	Illustrate the operations, model, and applications of fuzzy logic.	К3
CO4	Illustrate the concepts of evolutionary algorithms such as Genetic Algorithm	К3
C05	Describe the concepts of multi-objective optimization models and collective systems.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Tabl	e (Mapping of Course	Outcomes to Program	Outcomes)
---------------------------	----------------------	----------------------------	-----------

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	2	2								3
CO3	3	3	3	2								3
CO4	3	3	2	2								3
CO5	3	3	3									3

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Principles of Soft Computing	S.N.Sivanandam, S.N. Deepa	John Wiley & Sons.	3/e, 2018			
2	Multi-objective Optimization using Evolutionary Algorithms	Kalyanmoy Deb,	John Wiley & Sons	1/e, 2009			
3	Computational intelligence: synergies of fuzzy logic, neural networks and evolutionary computing.	Siddique N, Adeli H.	John Wiley & Sons	1/e, 2013			
4	Bio-inspired artificial intelligence: theories, methods, and technologies.	Floreano D, Mattiussi C.	MIT press; 2008 Aug 22.	1/e, 2023			

	Reference Books							
Sl. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year				
1	Fuzzy Logic with Engineering Applications	Timothy J Ross,	John Wiley & Sons,	3/e, 2011				
2	Neural Networks, Fuzzy Logic & Genetic Algorithms Synthesis and Applications	T.S.Rajasekaran, G.A.Vijaylakshmi Pai	Prentice-Hall India	1/e, 2003				
3	Neural Networks- A Comprehensive Foundation	Simon Haykin	Pearson Education	2/e, 1997				
4	Fuzzy Set Theory & Its Applications	Zimmermann H. J,	Allied Publishers Ltd.	4/e, 2001				

	Video Links (NPTEL, SWAYAM)						
No.	Link ID						
1	https://archive.nptel.ac.in/courses/106/105/106105173/						

MICROCONTROLLERS

(Common to AD/CD/CR)

Course Code	PEADT418	CIE Marks	40
Teaching Hours/Week (L:T:P:R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To introduce the ARM architecture and ARM-based microcontroller architecture.
- **2.** To impart knowledge on the hardware and software components to develop embedded systems using STM32 microcontrollers.

Module No.	Syllabus Description	Contact Hours
1	Introduction to Embedded Systems and ARM Cortex-M Architecture:- Overview of embedded systems including definition, applications, and characteristics, Embedded C Programming Basics and Key Concepts, Differences and use cases of microcontrollers versus microprocessors, Classification of processors including RISC, CISC, and other architectures, Overview of ARM Cortex-M Series features and applications, Introduction to Cortex-M23 and Cortex-M33 Processors: Armv8-M Architecture, Core Features (Registers, Memory, Bus Architecture),Comparison with Previous Cortex-M Generations.	8
2	 STM32 Microcontroller Overview and Development Environment Setup:- Overview of the STM32 Family and Features of the STM32U575, Development Environment and HAL- Introduction, Writing, and Debugging Your First Program (LED Interfacing); Interfacing - Seven-Segment Display, LCD Display, Matrix Keypad, Relay, Analog to Digital Conversion- Potentiometer, Temperature Sensor, LDR, Microphone, Digital to Analog Conversion - Simple DAC Output, Sine Wave Generation, Audio Signal 	10

	Generation, Interrupt Handling Basics and Applications, Timers and PWM:	
	Configuration, Real-Time Clock (RTC), LED Brightness Control, Motor	
	Speed Control	
	Communication Protocols :-	
3	Overview of Serial Communication Protocols- USART, I2C, and SPI, Interfacing an I2C Temperature Sensor and Displaying Data on an LCD, writing to and Reading from an SPIbased EEPROM, Implementing CAN Communication Between STM32 Microcontrollers; Creating a USB HID Device for Keyboard and Mouse Emulation.	9
4	IoT and RTOS:- Introduction to IoT and its Layers of Architecture, Introduction to IoT Communication Protocols including MQTT, CoAP, and HTTP, Securing IoT Data Using Encryption Techniques, Wireless Communication Basics- GSM, Interfacing GSM (Sending SMS, Making Calls, Internet Connectivity Using AT Commands), Bluetooth(Data Transfer between STM32U575 and Mobile Devices), RTOS Concepts: FreeRTOS Overview, Task Creation, Scheduling, Timers, Inter-task Communication (Queues, Semaphores), Designing an IoT-Based Home Automation System.	9

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions.

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. 	60
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the architectural features and instructions of the ARM microcontrollers.	К2
CO2	Develop applications involving interfacing of external devices and I/O with ARM microcontroller.	К3
СОЗ	Use various communication protocols of interaction with peer devices and peripherals.	К3
CO4	Demonstrate the use of a real time operating system in embedded system applications.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3	3	3							3
CO4	3	3	3	3	3							3

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	The Definitive Guide to ARM Cortex- M3 and Cortex-M4 Processors	Joseph Yiu	Newnes - Elsevier	3/e, 2014				
2	Mastering STM32	Carmine Noviello	Learnpub	2/e, 2022				

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	ARM System Developer's Guide	Andrew N. Sloss, Dominic Symes, Chris Wright	Morgan Kaufman	1/e, 2008			
2	Embedded System Design with Arm Cortex-M Microcontrollers	Cem Ünsalan, Hüseyin Deniz Gürhan, Mehmet Erkin Yücel	Springer	1/e, 2022			
3	Introduction to ARM ® Cortex-M Microcontrollers	Jonathan W. Valvano	Self-Published	5/e, 2014			

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://archive.nptel.ac.in/courses/106/105/106105193/				
2	https://www.st.com/resource/en/datasheet/				

FOUNDATIONS OF PATTERN RECOGNITION

Course Code	PEADT415	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCST303		

Course Objectives:

- **1.** To provide a comprehensive understanding of the fundamental concepts and techniques of pattern recognition.
- 2. To develop the ability to apply pattern recognition methods to solve practical problems.
- **3.** To enhance skills in using modern tools and techniques for feature extraction, dimensionality reduction, and machine learning algorithms

Module No.	Syllabus Description	Contact Hours
1	Introduction to Pattern Recognition - Basics of pattern recognition, Applications and examples, Statistical pattern recognition, Introduction to classifiers: k-NN, Naive Bayes Project 1: Image Classification using k-NN and Naive Bayes - Classify images from the CIFAR-10 dataset using k-NN and Naive Bayes classifiers, and the deliverables are code implementation, project report, and presentation. Assignments : Assignment on k-NN and Naive Bayes classifiers Mini-project proposal submission	9
2	 Feature Extraction and Dimensionality Reduction - Feature selection techniques, Principal Component Analysis (PCA), Non-linear dimensionality reduction methods (t-SNE, LLE) Project 2: Dimensionality Reduction for Handwritten Digit Recognition - Use PCA and LDA to reduce the dimensionality of the MNIST dataset and apply a classifier, and the deliverables are code implementation, project report, and presentation. Assignments: Assignment on PCA and LDA theory, Mid-term project: Detailed report on feature extraction project 	9

3	 Machine Learning Algorithms for Pattern Recognition - Support Vector Machines (SVM), Neural Networks and Deep Learning, Ensemble methods (Random Forests, Gradient Boosting), Clustering techniques (k-means, hierarchical clustering) Project 3: Text Classification using SVM and Neural Networks - Classify text documents from the 20 Newsgroups dataset using SVM and a simple neural network, and the deliverables are code implementation, project report, and presentation. Assignments : Assignment on SVM and neural network theory Group project on Ensemble methods applied to a complex dataset 	9
4	Advanced Topics and Applications - Hidden Markov Models (HMM), Bayesian Networks, Pattern recognition in speech and handwriting. Project 4 : Speech Recognition using Hidden Markov Models - Develop a speech recognition system using Hidden Markov Models using the dataset - TIMIT Acoustic-Phonetic Continuous Speech Corpus. The deliverables are code implementation, project report, and presentation. Tools: Python, HTK (Hidden Markov Model Toolkit). Project 5: Handwriting Recognition using Deep Learning - Develop a handwriting recognition system using deep learning techniques using the datasets - MNIST Handwritten Digits Dataset, IAM Handwriting Database. The deliverables are code implementation, project report, and presentation. Tools: Python, TensorFlow/Keras, OpenCV. Project 6: Bayesian Networks for Medical Diagnosis - Use Bayesian Networks to develop a system for medical diagnosis using the datasets - UCI Machine Learning Repository, Hepatitis Dataset. The deliverables are code implementation, project report, and presentation. Tools: Python, PyMC3, Netica. Assignments: Assignments: Final project: Comprehensive pattern recognition application	9

Continuous Internal Evaluation Marks (CIE):

Attendance	Internal Ex	Evaluate	Analyse	Total
5	15	10	10	40

Criteria for Evaluation(Evaluate and Analyse): 20 marks

- 1. Code Implementation (40%) 8 Marks
- Correctness (4 Marks): Code accurately implements the required algorithms (e.g., k-NN, Naive Bayes, PCA, LDA, SVM, Neural Networks, HMM) and processes the dataset as expected. Code runs without errors and produces the expected output for different scenarios or edge cases.
- Efficiency and Robustness (4 Marks): Code is optimized for efficiency, handling large datasets or complex computations effectively, and includes error handling and can manage diverse data.
- 2. Results Analysis (60%) 12 Marks
- Valuation Metrics (6 Marks): Proper use of evaluation metrics (e.g., accuracy, precision, recall, F1 score) to assess the performance of classifiers and dimensionality reduction techniques. Comparison of different methods or classifiers and discussion on their effectiveness, including strengths and limitations.
- Insightful Analysis (6 Marks): Interpretation of the results, including any anomalies or unexpected findings. Based on results, provides thoughtful recommendations or insights for potential improvements or alternative approaches.

End Semester Examination Marks (ESE):

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24 marks) 	 2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. Each question carries 9 marks. (4x9 = 36 marks) 	60

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand and explain the fundamental concepts of pattern recognition and its applications.	К2
CO2	Apply statistical and machine learning techniques to solve pattern recognition problems.	К3
CO3	Implement feature extraction and dimensionality reduction techniques for various datasets.	K4
CO4	Develop and evaluate different machine learning models for pattern recognition tasks.	К5
CO5	Work on real-world pattern recognition projects, demonstrating problem-solving and project management skills.	К5

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3	3								3
CO4	3	3	3	3								3
CO5	3	3	3				3		3	3		3

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Pattern Recognition and Machine Learning	Christopher M. Bishop	Springer	1/e, 2009				
2	Mastering Machine Learning Algorithms	Giuseppe Bonaccorso	Packt Publishing	2/e,2020				
3	Pattern Classification	Richard Duda, Peter Hart, David Stork	Wiley	2/e, 2007				
4	Deep Learning	Ian Goodfellow, Yoshua Bengio, and Aaron Courville	McGraw-Hill	1/e, 1997				
5	Feature Extraction and Image Processing for Computer Vision	Mark Nixon and Alberto Aguado	Academic Press	3/e, 2012				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	The Nature of Statistical Learning Theory	Vladimir Vapnik	Springer-Verlag New York Inc.	2/e, 2010				
2	The Elements of Statistical Learning	Jerome Friedman, Robert Tibshirani, Trevor Hastie	Springer-Verlag New York Inc	9/e, 2017				
3	Pattern Recognition	S.Theodoridis and K.Koutroumbas	Academic Press	4/e, 2009				

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://archive.nptel.ac.in/courses/117/105/117105101/					
2	https://archive.nptel.ac.in/courses/117/105/117105101/					
3	https://archive.nptel.ac.in/courses/117/105/117105101/					
4	https://archive.nptel.ac.in/courses/117/105/117105101/					

ECONOMICS FOR ENGINEERS

(Common to All Branches)

Course Code	UCHUT346	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	2:0:0:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Understanding of finance and costing for engineering operation, budgetary planning and control
- 2. Provide fundamental concept of micro and macroeconomics related to engineering industry
- 3. Deliver the basic concepts of Value Engineering.

Module No.	Syllabus Description	Contact Hours
1	Basic Economics Concepts - Basic economic problems - Production Possibility Curve - Utility - Law of diminishing marginal utility - Law of Demand - Law of supply - Elasticity - measurement of elasticity and its applications - Equilibrium- Changes in demand and supply and its effects Production function - Law of variable proportion - Economies of Scale - Internal and External Economies - Cobb-Douglas Production Function	6
2	Cost concepts – Social cost, private cost – Explicit and implicit cost – Sunk cost - Opportunity cost - short run cost curves - Revenue concepts Firms and their objectives – Types of firms – Markets - Perfect Competition – Monopoly - Monopolistic Competition - Oligopoly (features and equilibrium of a firm)	6

3	Monetary System – Money – Functions - Central Banking –Inflation - Causes and Effects – Measures to Control Inflation - Monetary and Fiscal policies – Deflation Taxation – Direct and Indirect taxes (merits and demerits) - GST National income – Concepts - Circular Flow – Methods of Estimation and Difficulties - Stock Market – Functions- Problems faced by the Indian stock market-Demat Account and Trading Account – Stock market Indicators- SENSEX and NIFTY	6
4	Value Analysis and value Engineering - Cost Value, Exchange Value, Use Value, Esteem Value - Aims, Advantages and Application areas of Value Engineering - Value Engineering Procedure - Break-even Analysis - Cost- Benefit Analysis - Capital Budgeting - Process planning	6

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Case study/ Micro project	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
10	15	12.5	12.5	50

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 Minimum 1 and Maximum 2 Questions from each module. Total of 6 Questions, each carrying 3 marks (6x3 =18marks) 	 2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 sub divisions. Each question carries 8 marks. (4x8 = 32 marks) 	50

Course Outcomes (COs)

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)	
	Understand the fundamentals of various economic issues using laws	K2
CO1	and learn the concepts of demand, supply, elasticity and production	
	function.	
	Develop decision making capability by applying concepts relating to	K3
CO2	costs and revenue, and acquire knowledge regarding the functioning of	
	firms in different market situations.	
<u> </u>	Outline the macroeconomic principles of monetary and fiscal systems,	K2
CO3	national income and stock market.	
	Make use of the possibilities of value analysis and engineering, and	K3
CO4	solve simple business problems using break even analysis, cost benefit	
	analysis and capital budgeting techniques.	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	-	-	1	-	-	-	-	1	-
CO2	-	-	-	-	-	1	1	-	-	-	1	-
CO3	-	-	-	-	1	-	-	-	-	-	2	-
CO4	-	-	-	-	1	1	-	-	-	-	2	-

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Managerial Economics	Geetika, Piyali Ghosh and Chodhury	Tata McGraw Hill,	2015			
2	Engineering Economy	H. G. Thuesen, W. J. Fabrycky	PHI	1966			
3	Engineering Economics	R. Paneerselvam	PHI	2012			

Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Engineering Economy	Leland Blank P.E, Anthony Tarquin P. E.	Mc Graw Hill	7 TH Edition		
2	Indian Financial System	Khan M. Y.	Tata McGraw Hill	2011		
3	Engineering Economics and analysis	Donald G. Newman, Jerome P. Lavelle	Engg. Press, Texas	2002		
4	Contemporary Engineering Economics	Chan S. Park	Prentice Hall of India Ltd	2001		

SEMESTER S3/S4

ENGINEERING ETHICS AND SUSTAINABLE DEVELOPMENT

Course Code	UCHUT347	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	2:0:0:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- **1.** Equip with the knowledge and skills to make ethical decisions and implement gender-sensitive practices in their professional lives.
- **2.** Develop a holistic and comprehensive interdisciplinary approach to understanding engineering ethics principles from a perspective of environment protection and sustainable development.
- 3. Develop the ability to find strategies for implementing sustainable engineering solutions.

Module No.	Syllabus Description			
1	Fundamentals of ethics - Personal vs. professional ethics, Civic Virtue, Respect for others, Profession and Professionalism , Ingenuity, diligence and responsibility, Integrity in design, development, and research domains, Plagiarism, a balanced outlook on law - challenges - case studies, Technology and digital revolution -Data, information, and knowledge, Cybertrust and cybersecurity, Data collection & management, High technologies: connecting people and places -accessibility and social impacts, Managing conflict , Collective bargaining, Confidentiality , Role of confidentiality in moral integrity, Codes of Ethics .	6		

	Basic concepts in Gender Studies - sex, gender, sexuality, gender	
	spectrum: beyond the binary, gender identity, gender expression, gender	
	stereotypes, Gender disparity and discrimination in education,	
	employment and everyday life, History of women in Science & Technology,	
	Gendered technologies & innovations, Ethical values and practices in	
	connection with gender - equity, diversity & gender justice, Gender policy	
	and women/transgender empowerment initiatives.	
	and women/transgender empowerment intratives.	
	Introduction to Environmental Ethics: Definition, importance and	
	historical development of environmental ethics, key philosophical theories	
	(anthropocentrism, biocentrism, ecocentrism). Sustainable Engineering	
	Principles: Definition and scope, triple bottom line (economic, social and	
	environmental sustainability), life cycle analysis and sustainability metrics.	
2	Ecosystems and Biodiversity: Basics of ecosystems and their functions,	6
	Importance of biodiversity and its conservation, Human impact on	
	ecosystems and biodiversity loss, An overview of various ecosystems in	
	Kerala/India, and its significance. Landscape and Urban Ecology:	
	Principles of landscape ecology, Urbanization and its environmental impact,	
	Sustainable urban planning and green infrastructure.	
	Hydrology and Water Management: Basics of hydrology and water cycle,	
	Water scarcity and pollution issues, Sustainable water management practices,	
	Environmental flow, disruptions and disasters. Zero Waste Concepts and	
	Practices: Definition of zero waste and its principles, Strategies for waste	
	reduction, reuse, reduce and recycling, Case studies of successful zero waste	
	initiatives. Circular Economy and Degrowth: Introduction to the circular	
3	economy model, Differences between linear and circular economies,	6
	degrowth principles, Strategies for implementing circular economy practices	
	and degrowth principles in engineering. Mobility and Sustainable	
	Transportation: Impacts of transportation on the environment and climate,	
	Basic tenets of a Sustainable Transportation design, Sustainable urban	
	mobility solutions, Integrated mobility systems, E-Mobility, Existing and	
	upcoming models of sustainable mobility solutions.	

Renewable Energy and Sustainable Technologies: Overview of renewable energy sources (solar, wind, hydro, biomass), Sustainable technologies in energy production and consumption, Challenges and opportunities in renewable energy adoption. Climate Change and Engineering Solutions: Basics of climate change science, Impact of climate change on natural and human systems, Kerala/India and the Climate crisis, Engineering solutions to mitigate, adapt and build resilience to climate change. Environmental Policies and Regulations: Overview of key environmental policies and regulations (national and international), Role of engineers in policy implementation and compliance, Ethical considerations in environmental policy-making. Case Studies and Future Directions: Analysis of real-world case studies, Emerging trends and future directions in environmental ethics and sustainability, Discussion on the role of engineers in promoting a sustainable future.

6

Course Assessment Method (CIE: 50 marks , ESE: 50)

Continuous Internal Evaluation Marks (CIE):

Continuous internal evaluation will be based on individual and group activities undertaken throughout the course and the portfolio created documenting their work and learning. The portfolio will include reflections, project reports, case studies, and all other relevant materials.

- The students should be grouped into groups of size 4 to 6 at the beginning of the semester. These groups can be the same ones they have formed in the previous semester.
- Activities are to be distributed between 2 class hours and 3 Self-study hours.
- The portfolio and reflective journal should be carried forward and displayed during the 7th Semester Seminar course as a part of the experience sharing regarding the skills developed through various courses.

SI. No.	Item	Particulars	Group/I ndividua l (G/I)	Marks
1	Reflective Journal	Weekly entries reflecting on what was learned, personal insights, and how it can be applied to local contexts.	I	5
2	Micro project	1 a) Perform an Engineering Ethics Case Study analysis and prepare a report	G	8
	(Detailed documentation of	1 b) Conduct a literature survey on 'Code of Ethics for Engineers' and prepare a sample code of ethics		
	the project, including methodologies,	2. Listen to a TED talk on a Gender-related topic, do a literature survey on that topic and make a report citing the relevant papers with a specific analysis of the Kerala context	G	5
findings, and reflections)		3. Undertake a project study based on the concepts of sustainable development* - Module II, Module III & Module IV	G	12
3	Activities	2. One activity* each from Module II, Module III & Module IV	G	15
4	Final Presentation	A comprehensive presentation summarising the key takeaways from the course, personal reflections, and proposed future actions based on the learnings.	G	5
		Total Marks		50

*Can be taken from the given sample activities/projects

Evaluation Criteria:

- **Depth of Analysis**: Quality and depth of reflections and analysis in project reports and case studies.
- Application of Concepts: Ability to apply course concepts to real-world problems and local contexts.
- Creativity: Innovative approaches and creative solutions proposed in projects and reflections.
- **Presentation Skills**: Clarity, coherence, and professionalism in the final presentation.

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
C01	Develop the ability to apply the principles of engineering ethics in their professional life.	К3
CO2	Develop the ability to exercise gender-sensitive practices in their professional lives	K4
CO3	Develop the ability to explore contemporary environmental issues and sustainable practices.	К5
CO4	Develop the ability to analyse the role of engineers in promoting sustainability and climate resilience.	К4
CO5	Develop interest and skills in addressing pertinent environmental and climate-related challenges through a sustainable engineering approach.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1						3	2	3	3	2		2
CO2		1				3	2	3	3	2		2
CO3						3	3	2	3	2		2
CO4		1				3	3	2	3	2		2
CO5						3	3	2	3	2		2

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Ethics in Engineering Practice and Research	Caroline Whitbeck	Cambridge University Press & Assessment	2nd edition & August 2011
2	Virtue Ethics and Professional Roles	Justin Oakley	Cambridge University Press & Assessment	November 2006
3	Sustainability Science	Bert J. M. de Vries	Cambridge University Press & Assessment	2nd edition & December 2023
4	Sustainable Engineering Principles and Practice	Bhavik R. Bakshi,	Cambridge University Press & Assessmen	2019
5	Engineering Ethics	M Govindarajan, S Natarajan and V S Senthil Kumar	PHI Learning Private Ltd, New Delhi	2012
6	Professional ethics and human values	RS Naagarazan	New age international (P) limited New Delhi	2006.
7	Ethics in Engineering	Mike W Martin and Roland Schinzinger,	Tata McGraw Hill Publishing Company Pvt Ltd, New Delhi	4" edition, 2014

Suggested Activities/Projects:

Module-II

- Write a reflection on a local environmental issue (e.g., plastic waste in Kerala backwaters or oceans) from different ethical perspectives (anthropocentric, biocentric, ecocentric).
- Write a life cycle analysis report of a common product used in Kerala (e.g., a coconut, bamboo or rubber-based product) and present findings on its sustainability.

- Create a sustainability report for a local business, assessing its environmental, social, and economic impacts
- Presentation on biodiversity in a nearby area (e.g., a local park, a wetland, mangroves, college campus etc) and propose conservation strategies to protect it.
- Develop a conservation plan for an endangered species found in Kerala.
- Analyze the green spaces in a local urban area and propose a plan to enhance urban ecology using native plants and sustainable design.
- Create a model of a sustainable urban landscape for a chosen locality in Kerala.

Module-III

- Study a local water body (e.g., a river or lake) for signs of pollution or natural flow disruption and suggest sustainable management and restoration practices.
- Analyse the effectiveness of water management in the college campus and propose improvements calculate the water footprint, how to reduce the footprint, how to increase supply through rainwater harvesting, and how to decrease the supply-demand ratio
- Implement a zero waste initiative on the college campus for one week and document the challenges and outcomes.
- Develop a waste audit report for the campus. Suggest a plan for a zero-waste approach.
- Create a circular economy model for a common product used in Kerala (e.g., coconut oil, cloth etc).
- Design a product or service based on circular economy and degrowth principles and present a business plan.
- Develop a plan to improve pedestrian and cycling infrastructure in a chosen locality in Kerala

Module-IV

- Evaluate the potential for installing solar panels on the college campus including cost-benefit analysis and feasibility study.
- Analyse the energy consumption patterns of the college campus and propose sustainable alternatives to reduce consumption What gadgets are being used? How can we reduce demand using energy-saving gadgets?
- Analyse a local infrastructure project for its climate resilience and suggest improvements.
- Analyse a specific environmental regulation in India (e.g., Coastal Regulation Zone) and its impact on local communities and ecosystems.
- Research and present a case study of a successful sustainable engineering project in Kerala/India (e.g., sustainable building design, water management project, infrastructure project).

• Research and present a case study of an unsustainable engineering project in Kerala/India highlighting design and implementation faults and possible corrections/alternatives (e.g., a housing complex with water logging, a water management project causing frequent floods, infrastructure project that affects surrounding landscapes or ecosystems).

FOUNDATIONS OF AI AND DATA SCIENCE LAB

Course Code	PCADL407	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCAIT302, PBADT304	Course Type	Lab

Course Objectives

- 1. To get hands-on experience in AI and data science using Python programming.
- 2. To develop an expert system for knowledge representation and reasoning.

Expt. No.	Experiments
1	Implement basic search strategies (BFS, DFS) for selected AI applications.
2	Implement informed search (A*) algorithms for routing problem.
3	Implement backtracking algorithms for Constraint Satisfaction Problem.
4	Implementation of Alpha-Beta pruning to find optimal solution for a given problem.
5	Implement a program to find a solution by using the local optima(Hill Climbing) algorithm.
6	Implement propositional logic inferences for AI tasks.
7	Implementation of Knowledge representation schemes.
8	Write a program to find Correlation between different features of a dataset in csv format.
9	Write a program to implement feature reduction using PCA. Calculate the covariance between features to find the optimal number of PCA components.
10	Implement Apriori algorithm in python to find relationships among numerous items in a dataset.
11	Implement FP-Growth algorithm in python to find frequent patterns in large database efficiently.
12	Implement Clustering algorithm to categorize the data.

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

• Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.

• Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Implement basic searching strategies, mathematical optimization methods and constraint satisfaction problems.	K3
CO2	Develop an expert system by using appropriate tools and techniques.	K3
CO3	Apply different methods (like Correlation and Covariance) to determine the dependence between features in the dataset and apply dimensionality reduction techniques.	K3
CO4	Apply various association rule mining and clustering techniques.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2							3
CO2	3	3	3	3	2							3
CO3	3	3	3	2	2							3
CO4	3	3	3	2	2							3

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Hands–On Machine Learning with Scikit– Learn and TensorFlow	Aurelien Geron	O'Reilly	2/e, 2019					
2	Data science and big data analytics, discovering, analyzing, visualizing, and presenting data	David dietrich	John Wiley and sons	1/e, 2014					
3	Artificial Intelligence and Intelligent Systems	Padhy, N.P.	Oxford University Press	1/e, 2005					

Reference Books								
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Artificial Intelligence: A Modern Approach	Stuart J. Russell, Peter Norvig	Pearson Education.	2/e,2003				
2	Knowledge Representation and Reasoning	Brachman, R. and Levesque, H.	Morgan Kaufmann	1/e, 2004				

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://onlinecourses.nptel.ac.in/noc22_cs32/preview					
2	https://onlinecourses.nptel.ac.in/noc21_ge20/preview					
3	https://www.coursera.org/learn/data-analysis-with-python					

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

•Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

DBMS LAB

(Common to CS/CD/CR/CA/AD/AI/CB/CN/CC/CU/CI/CG)

Course Code	PCCSL408	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Lab

Course Objectives:

- 1. To equip students with comprehensive skills in SQL, PL/SQL, and NoSQL databases.
- 2. To enable the learner to proficiently design, implement, and manage relational and non-relational databases to meet diverse data management needs

Expt. No.	Experiments
1	Design a database schema for an application with ER diagram from a problem description.
2	Creation of database schema - DDL (create tables, set constraints, enforce relationships, create indices, delete and modify tables). Export ER diagram from the database and verify relationships (with the ER diagram designed in step 1).
3	Database initialization - Data insert, Data import to a database (bulk import using UI and SQL Commands).
4	Practice SQL commands for DML (insertion, updating, altering, deletion of data, and viewing/querying records based on condition in databases).
5	Implementation of various aggregate functions, Order By, Group By & Having clause in SQL.
6	Implementation of set operators nested queries, and join queries.
7	Practice of SQL TCL DCL commands like Rollback, Commit, Savepoint,Practice of SQL DCL commands for granting and revoking user privileges.
8	Practice of SQL commands for creation of views and assertions.
9	Creation of Procedures, Triggers and Functions.
10	Creation of Packages and cursors.
11	Design a database application using any front-end tool for any problem selected in experiment number 1. The application constructed should have five or more tables**.
12	Perform basic CRUD (Create, Read, Update, Delete) operations on a Cassandra table.
13	Write and execute CQL queries to retrieve specific data from Cassandra tables
14	Create a simple application using Mongodb with python

** The problem must be designed to convey the difference of NoSQL from SQL databases.

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
C01	Develop database schema for a given real world problem-domain using standard design and modeling approaches	К3			
CO2	Construct queries using SQL for database creation, interaction, modification, and updation.	К3			
CO3	Plan and implement triggers and cursors, procedures, functions, and control structures using PL/SQL	К3			
CO4	Perform CRUD operations in NoSQL Databases	К3			
CO5	Design database applications using front-end tools and back-end DBMS	K5			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO- PO Mapping (Mapping of	Course Outcomes with	Program Outcomes)
ee ie mapping (mapping of	course outcomes with	i i ogi um Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1						3		3
CO2	3	3	3	1						3		3
CO3	3	3	3	1						3		3
CO4	3	3	3	2	3					3		3
CO5	3	3	3	2	3					3	3	3

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Fundamentals of Database Systems	Elmasri, Navathe	Pearson	7/e, 2017					
2	Professional NoSQL	Shashank Tiwari	Wiley	1/e, 2011					

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Database System Concepts,	Sliberschatz Korth and S. Sudarshan	McGraw Hill,	7/e, 2017					
2	NoSQL for Dummies	Adam Fowler	John Wiley & Sons	1/e, 2015					
3	NoSQL Data Models: Trends and Challenges (Computer Engineering: Databases and Big Data),	Olivier Pivert	Wiley	1/e, 2018					
4	Making the Sense of NoSQL : A guide for Managers and Rest of us.	Dan McCreary and Ann Kelly	Manning	1/e, 2014					

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://onlinecourses.nptel.ac.in/noc21_cs04/preview						
2	https://onlinecourses.nptel.ac.in/noc21_cs04/preview						
3	https://onlinecourses.nptel.ac.in/noc21_cs04/preview						
4	https://archive.nptel.ac.in/courses/106/104/106104135/						

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

•Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.

- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

SEMESTER 5

ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

COMPUTER NETWORKS

(Common to CS/CD/CM/CR/CA/AD/AI/CB/CN/CU/CI)

Course Code	PCCST501	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To introduce the core concepts of computer networking.
- 2. To develop a big picture of the internetworking implementation on Linux-based systems.
- 3. To impart an overview of network management concepts.

SYLLABUS

Module No.	Syllabus Description			
1	Overview of the Internet, Protocol layering (Book 1 Ch 1) Application Layer: Application-Layer Paradigms, Client-server applications - World Wide Web and HTTP, FTP. Electronic Mail, DNS. Peer-to-peer paradigm - P2P Networks, Case study: BitTorrent (Book 1 Ch 2)	6		
2	 Transport Layer: Services, Protocols, UDP, TCP (Book 1 Ch 3). Hands-on: Sockets Introduction, Elementary TCP Sockets, TCP Client/Server Example, I/O Multiplexing: The select and poll Functions (Book 2 Ch 3 to 6), Elementary UDP Sockets (Book 2 Ch 8), Advanced I/O Functions (Book 2 Ch 14) Network Layer: Introduction, Network-layer protocols, Unicast routing, Multicast routing - Multicasting Basics, Intra domain and inter-domain routing, Next generation IP (Book 1 Ch 4), Quality of Service (Book 1 Ch 8) Hands-on: Linux Kernel Implementation of Routing Table and Caches, Routing Cache Implementation Overview, Adding new entry in the Routing Table using ip command (Book 3 Ch 14) 	18		

3	Data-Link Layer: Data link control (DLC), Multiple access protocols (MAC), Link-layer addressing, Ethernet protocol, Connecting devices (Book 1 Ch 5) Wireless LANs, Mobile IP (Book 1 Ch 6) <i>Hands-on: Datalink Provider Interface, SOCK_PACKET and PF_PACKET</i> (Book 2 Ch 29)	11
4	SNMP, ASN.1 (Book 1 Ch 9)Physical Layer: Data and signals, Digital transmission, Analog transmission,Bandwidth utilization, Transmission media (Book 1 Ch 7)	9

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	00
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the internetworking design in terms of protocol stack and the role of various application layer protocols	K2
CO2	Illustrate the functions of the transport layer from connectionless and connection-oriented perspectives	К3
CO3	Identify how the network layer achieves host-to-host connectivity and caters to the diverse service requirements of the host applications	К3
CO4	Explain the nuances of the data link layer design and demonstrate the various data link layer protocols	К3
C05	Describe the fundamental characteristics of the physical layer and understand how the physical layer supports the functionalities of the top layers	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											3
CO2	3	2										3
CO3	3	2			2							3
CO4	3	2										3
CO5	3											3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Computer Networks: A Top- Down Approach	Behrouz A Forouzan	McGraw Hill	SIE, 2017			
2	Unix Network Programming, Volume 1: The Sockets Networking API	W. Richard Stevens, Andrew M. Rudoff, Bill Fenner	Pearson Education	3/e, 2004			
3	TCP/IP Architecture, design, and implementation in Linux	Sameer Seth M. Ajaykumar Venkatesulu	Wiley	1/e, 2008			

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Computer Networking: A Top- Down Approach Featuring Internet	J. F. Kurose and K. W. Ross	Pearson Education	8/e, 2022				
2	Computer Networks, A Systems Approach	L. L. Peterson and B. S. Davie	Morgan Kaufmann	5/e, 2011				

	Video Links (NPTEL, SWAYAM)					
No.	No. Link ID					
1	https://nptel.ac.in/courses/106/105/106105183/					

ROBOTICS AND INTELLIGENT SYSTEMS

Course Code	PCADT502	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To Understand the concepts of manipulator and mobile robotics
- 2. To enable the learner to choose the suitable sensors, actuators and control for robot design
- **3.** To equip the learners to develop kinematic model of mobile robot and understand robotic vision intelligence.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
	Introduction to robotics - Degrees of freedom, Robot types- Manipulators-	
	Anatomy of a robotic manipulator-links, joints, actuators, sensors,	
	controllers. Robot configurations-PPP, RPP, RRP, RRR. Mobile robots-	
	wheeled, legged, aerial robots, underwater robots, surface water robots.	
1	Dynamic characteristics- speed of motion, load carrying capacity & speed of	
	response. Introduction to End effectors - mechanical grippers, special tools,	11
	Magnetic grippers, Vacuum grippers, adhesive grippers, Active and Passive	
	grippers. Ethics in robotics - 3 laws - applications of robots.	
	Sensors, Actuators and Control) Sensor classification- touch, force,	
	proximity, vision sensors. Internal sensors-Position sensors, velocity	
	sensors, acceleration sensors, Force sensors; External sensors-contact type,	
2	non-contact type; Digital Camera - CCD camera - CMOS camera -	
2	Omnidirectional cameras Sensor characteristics. Actuators - DC Motors -	11
	H-Bridge - Pulse Width Modulation - Stepper Motors - Servos, Hydraulic	11
	& pneumatic actuators.	
3	Robotic Vision: Sensing, Pre-processing, Segmentation, Description,	11

	Recognition, Interpretation, Feature extraction -Camera sensor hardware	
	interfacing. Representation of Transformations - Representation of a Pure	
	Translation Pure Rotation about an Axis - Combined Transformations -	
	Transformations Relative to the Rotating Frame. Basic understanding of	
	Differential-Drive Wheeled Mobile Robot, Degree of mobility - different	
	wheel configurations, holonomic and nonholonomic robots. Omnidirectional	
	Wheeled Mobile Robots.	
	Position and Orientation - Representing robot position. Basics of reactive	
	navigation; Robot Localization, Challenges in localization - Continuous	
	representations - Decomposition strategies - Current challenges in map	
	representation. Probabilistic map-based localization (only Kalman method),	
	Autonomous map building, Simultaneous localization and mapping (SLAM)	
4	- Mathematical definition and various types of SLAM -, Path Planning-	
	Graph search, deterministic graph search -, breadth first search - depth first	11
	search- Dijkstra' s algorithm, A*, D* algorithms, Potential field based path	
	planning. Obstacle avoidance - Bug algorithm - Vector Field Histogram -	
	Dynamic window approaches. Navigation Architectures - Modularity for	
	code reuse and sharing - Control localization.	
L	1	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Understand the concepts of manipulator and mobile robotics.	K2			
CO2	Choose the suitable sensors, actuators and control for robot design.	K3			
CO3	Developing kinematic models of mobile robots and understanding robotic vision intelligence.	К3			
CO4	Discover the localization and mapping methods in robotics.	К3			
CO5	Plan the path and navigation of the robot by applying an artificial intelligence algorithm.	К3			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	2	2	-	-	-	-	-	2
CO2	2	2	-	-	3	-	-	-	-	-	-	3
CO3	3	3	-	3	2	3	-	-	-	-	-	3
CO4	2	-	-	3	3	3	-	-	-	-	-	3
CO5	3	-	-	3	3	2	-	-	-	-	-	3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Introduction to Autonomous Mobile Robots	R Siegwart, IR Nourbakhsh, D Scaramuzza	MIT Press	2/e, 2011				
2	Embedded Robotics, Mobile Robot Design and Applications with Embedded Systems	Thomas Bräunl	Springer	3/e, 2006				
3	Introduction to Mobile Robot Control	S.G. Tzafestas	Elsevier	1/e, 2014				
4	Artificial Intelligence for Robotics	Francis X. Govers	Packt	1/e, 2018				
5	Introduction to Robotics - Analysis, Control, Applications	Saeed B. Niku	Wiley	2/e, 2011				
6	Industrial Robotics - Technology ,Programming and Applications	Mikell P Groover	McGraw Hill	2/e, 2017				

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Introduction to Robotics	John J. Craig	Pearson Education	3/e, 2005					
2	Introduction to Robotics	S. K. Saha	TATA McGraw Hills	2/e, 2014					
3	Robotics, Vision and Control - Fundamental Algorithms in MATLAB	Peter Corke	Springer-Verlag	1/e, 2021					

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://archive.nptel.ac.in/courses/107/106/107106090/						
2	https://archive.nptel.ac.in/courses/108/108/108108147/						
3	https://www.youtube.com/watch?v=nAwVfwSHAP0						
4	https://www.youtube.com/watch?v=bBPeV5Bee7k						

MACHINE LEARNING

(Common to CS/AD/CR/CA/CC/CD)

Course Code	PCCST503	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To impart the fundamentals principles of machine learning in computer and science.
- **2.** To provide an understanding of the concepts and algorithms of supervised and unsupervised learning.

SYLLABUS

Module No.	Syllabus Description				
1	Introduction to ML :- Machine Learning vs. Traditional Programming, Machine learning paradigms - supervised, semi-supervised, unsupervised, reinforcement learning. Parameter Estimation - Maximum likelihood estimation (MLE) and maximum aposteriori estimation (MAP), Bayesian formulation. Supervised Learning :- Feature Representation and Problem Formulation, Role of loss functions and optimization Regression - Linear regression with one variable, Linear regression with multiple variables : solution using gradient descent algorithm and matrix method.	9			
2	Classification - Logistic regression, Naïve Bayes, KNN, Decision Trees – ID3 Generalisation and Overfitting - Idea of overfitting, LASSO and RIDGE	9			

	regularization, Idea of Training, Testing, Validation						
	Evaluation measures - Classification - Precision, Recall, Accuracy, F-						
	Measure, Receiver Operating Characteristic Curve(ROC), Area Under						
	Curve (AUC).						
	Regression - Mean Absolute Error (MAE), Root Mean Squared Error						
	(RMSE), R Squared/Coefficient of Determination.						
	SVM – Linear SVM, Idea of Hyperplane, Maximum Margin Hyperplane,						
	Non-linear SVM, Kernels for learning non-linear functions						
3	Neural Networks (NN) - Perceptron, Neural Network - Multilayer feed-	9					
	forward network, Activation functions (Sigmoid, ReLU, Tanh), Back						
	propagation algorithm.						
	Unsupervised Learning						
	Clustering - Similarity measures, Hierarchical Clustering - Agglomerative						
	Clustering, partitional clustering, K-means clustering						
4	Dimensionality reduction - Principal Component Analysis, Multidimensional	9					
	scaling						
	Ensemble methods - bagging, boosting; Resampling methods -						
	Bootstrapping, Cross Validation. Practical aspects - Bias-Variance tradeoff.						

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	Total of 8 Questions, each of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Illustrate Machine Learning concepts and basic parameter estimation methods.	K2
CO2	Demonstrate supervised learning concepts (regression, classification).	K3
CO3	Illustrate the concepts of Multilayer neural network and Decision trees	K3
CO4	Describe unsupervised learning concepts and dimensionality reduction techniques	К3
CO5	Use appropriate performance measures to evaluate machine learning models	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3
CO5	3	3	3									3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Introduction to Machine Learning	Ethem Alpaydin	MIT Press	4/e, 2020		
2	Data Mining and Analysis: Fundamental Concepts and Algorithms	Mohammed J. Zaki Wagner Meira	Cambridge University Press	1/e, 2016		
3	Neural Networks for Pattern Recognition	Christopher Bishop	Oxford University Press	1/e, 1998		

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Applied Machine Learning	M Gopal	McGraw Hill	2/e, 2018			
2	Machine Learning using Python	Manaranjan Pradhan U Dinesh Kumar	Wiley	1/e, 2019			
3	Machine Learning: Theory and Practice	M.N. Murty, V.S. Ananthanarayana	Universities Press	1/e, 2024			

	Video Links (NPTEL, SWAYAM)				
No.	Link ID				
1	https://archive.nptel.ac.in/courses/106/105/106105152/				
2	https://archive.nptel.ac.in/courses/106/106/106106139/				
3	https://nptel.ac.in/courses/106106202				

BIG DATA ANALYTICS

Course Code	PBADT504	CIE Marks	60
Teaching Hours/Week (L: T:P: R)	3:0:0:1	ESE Marks	40
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	UCEST105 PBADT304	Course Type	Practical

Course Objectives:

- 1. To understand the need of a framework to store and process the big data.
- 2. To have knowledge on the Big Data Technologies for processing the Different types of Data.
- 3. To understand the advanced framework for faster accessing and processing of Big Data.

SYLLABUS

Module No.	e Syllabus Description		
1	Hadoop Distributed File System Introduction to Big data, Conventional Data vs Big data, Big data architecture, Big data platformsHadoop Ecosystem, Core Components, HDFS- Architecture, Using HDFS Files, HDFS Design, Blocks, Namenodes and Data nodes, Basic File system Operations, Hadoop Specific File Types, Anatomy of a file read and file write. Data Processing with MapReduce: Execution Pipeline-Map Reduce: Developing a map-reduce application	12	
2	 Pig: Introduction to PIG, Execution Modes of Pig, Comparison of Pig with Databases, Grunt, Pig Latin, User Defined Functions, Data Processing operators. Hive: Hive Shell, Hive Services, Hive Metastore, Comparison with Traditional Databases, HiveQL, Tables, Querying Data and User Defined Functions. Hbase: HBasics, Concepts, Clients, Example, Hbase Versus RDBMS. 	12	

3	Introduction to R – Overview of modern data analytic tools, Introduction to R, R Graphical User Interfaces - Features of R Language, Vectors, Filtering, Creating Matrices, Applying Functions to Matrix Rows and Columns, Lists, Creating List, General List Operations, Data Frames, Creating Data Frames, Matrix like Operations in Frames, Applying Functions to Data Frames, Reading and Writing Files.	12
4	Overview of Spark – Hadoop Overview of Spark – Hadoop vs. Spark – Cluster Design – Cluster Management – performance, Application Programming interface (API): Spark Context, Resilient Distributed Datasets, Creating RDD, RDD Operations, and Saving RDD - Lazy Operation – Spark Jobs. Writing Spark Application - Spark Programming in Python, R, Java - Application Execution	12

Suggestion on Project Topics

• Search Engine Optimization, Social Media Reputation Monitoring, Equity Research, Detection of Global Suicide rate, Find the Percentage of Pollution in India, Analyze crime rate in India, Health Status Prediction, Anomaly Detection in cloud server, Tourist Behaviour Analysis, BusBest- Not limited to above topics

Course Assessment Method (CIE: 60 marks, ESE: 40 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Project	Internal Ex-1	Internal Ex-2	Total
5	30	12.5	12.5	60

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 2 marks (8x2 =16 marks) 	 2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 subdivisions. Each question carries 6 marks. (4x6 = 24 marks) 	40

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Demonstrate the Hadoop framework, focusing on the Hadoop Distributed File System (HDFS) and MapReduce.	K3
CO2	Simulate various Big data technologies like Pig, Hive, Hbase	К3
CO3	Resolve problems associated with big data with the features of R programming	К3
CO4	Demonstrate spark programming with different programming languages	К3
CO5	Develop and Implement innovative ideas on big data technologies	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2								3
CO2	3	2	2	2								3
CO3	3	2	2	2								3
CO4	3	2	2	2								3
CO5	3	2	3	3				2		3		3

Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Hadoop: The Definitive Guide	Tom White	O'reilly Media	4/e, 2015		
2	Professional Hadoop Solutions	Boris Lublinsky, Kevin T. Smith, Alexey Yakubovich	Wrox Press	1/e, 2014		
3	The Art of R Programming: A Tour of Statistical Software Design	Norman Matloff	NoStarch Press	1/e,2011		
4	Spark in Action	Jean-Georges Perrin	O'Reilly Media	1/e, 2020		
5	Mastering Apache Spark	Mike Frampton	Packt Publishing	1/e, 2015		
6	Machine Learning with Spark	Nick Pentreath	Pract Publishing	1/e. 2015		

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Big Data Fundamentals: Concepts, Drivers & Techniques	Thomas Erl, Wajid Khattak, and Paul Buhler	Pearson India Education Service Pvt. Ltd	1/e, 2016				
2	Programming Pig Dataflow Scripting with Hadoop	Alan Gates	O'Reilly Media, Inc	1/e, 2011				
3	Programming Hive	Jason Rutherglen, Dean Wampler, Edward Caprialo	O'ReillyMedia Inc	1/e, 2012				
4	Big Data	Black Book TM	DreamTech Press	1/e, 2016				

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	Big Data Computing: https://nptel.ac.in/courses/106104189					
2	Advanced R Programming for Data Analytics in Business: https://nptel.ac.in/courses/110104513					
3	Social Network Analysis: https://nptel.ac.in/courses/106106239					

L: Lecture	R: Project (1 Hr.), 2 Faculty Members					
(3 Hrs.)	Tutorial	Practical	Presentation			
Lecture delivery	Project identification	Simulation/ Laboratory Work/ Workshops	Presentation (Progress and Final Presentations)			
Group discussion	Project Analysis	Data Collection	Evaluation			
Question answer Sessions/ Brainstorming Sessions	Analytical thinking and self-learning	Testing	Project Milestone Reviews, Feedback, Project reformation (If required)			
Guest Speakers (Industry Experts) Case Study/ Field Survey Report		Prototyping	Poster Presentation/ Video Presentation: Students present their results in a 2 to 5 minutes video			

PBL Course Elements

Assessment and Evaluation for Project Activity

Sl. No	Evaluation for	Allotted Marks
1	Project Planning and Proposal	5
2	Contribution in Progress Presentations and Question Answer Sessions	4
3	Involvement in the project work and Team Work	3
4	Execution and Implementation	10
5	Final Presentations	5
6	Project Quality, Innovation and Creativity	3
	Total	30

1. Project Planning and Proposal (5 Marks)

- Clarity and feasibility of the project plan
- Research and background understanding
- Defined objectives and methodology

2. Contribution in Progress Presentation and Question Answer Sessions (4 Marks)

- Individual contribution to the presentation
- Effectiveness in answering questions and handling feedback

3. Involvement in the Project Work and Team Work (3 Marks)

- Active participation and individual contribution
- Teamwork and collaboration

4. Execution and Implementation (10 Marks)

- Adherence to the project timeline and milestones
- Application of theoretical knowledge and problem-solving
- Final Result

5. Final Presentation (5 Marks)

- Quality and clarity of the overall presentation
- Individual contribution to the presentation
- Effectiveness in answering questions

6. Project Quality, Innovation, and Creativity (3 Marks)

- Overall quality and technical excellence of the project
- Innovation and originality in the project
- Creativity in solutions and approaches

SOFTWARE PROJECT MANAGEMENT

(Common CS/CD/CM/CR/CA/AD/AM)

Course Code	PECST521	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs.30 Min.
Prerequisites (if any)	PECST411	Course Type	Theory

Course Objectives:

- 1. To learn the techniques to effectively plan, manage, execute, and control projects within time and cost targets with a focus on Information Technology and Service Sector.
- 2. To learn agile project management techniques such as Scrum and DevOps.

SYLLABUS

Module	Syllabus Description	
No.		
1	Project scheduling and feasibility study : - Project Overview and Feasibility Studies - Identification, Market and Demand Analysis, Project Cost Estimate, Financial Appraisal; Project Scheduling - Project Scheduling, Introduction to PERT and CPM, Critical Path Calculation, Precedence Relationship, Difference between PERT and CPM, Float Calculation and its importance, Cost reduction by Crashing of	8
2	activity. Resource Scheduling, Cost Control and Project management Features :- Cost Control and Scheduling - Project Cost Control (PERT/Cost), Resource Scheduling & Resource Levelling; Project Management Features - Risk Analysis, Project Control, Project Audit and Project Termination.	8
3	Agile Project Management :- Agile Project Management - Introduction, Agile Principles, Agile methodologies, Relationship between Agile Scrum, Lean, DevOps and IT Service Management (ITIL; Other Agile Methodologies - Introduction to XP, FDD, DSDM, Crystal.	9

	Scrum and DevOps in project management :-	
	Scrum - Various terminologies used in Scrum (Sprint, product backlog,	
	sprint backlog, sprint review, retro perspective), various roles (Roles in	
4	Scrum), Best practices of Scrum, Case Study; DevOps - Overview and its	11
4	Components, Containerization Using Docker, Managing Source Code and	11
	Automating Builds, Automated Testing and Test-Driven Development,	
	Continuous Integration, Configuration Management, Continuous	
	Deployment, Automated Monitoring, Case Study.	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	00
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand how effectively plan, and schedule projects within time and cost targets	К2
CO2	Apply project estimation and evaluation techniques to real world problem	К3
CO3	Discuss different Agile Project Methodologies	K2
CO4	Apply various SCRUM practices in project management.	K3
CO5	Demonstrate the techniques used in DevOps.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3								2	2
CO2	3	3	3								2	2
CO3	3	3	3								2	2
CO4	3	3	3								2	2
CO5	3	3	3								2	2

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Succeeding with Agile: Software Development Using Scrum	Mike Cohn	Addison-Wesley	1/e, 2009				

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Agile Product Management with Scrum	Roman Pichler	Addison-Wesley	1/e, 2010					
2	Agile Project Management with Scrum	Ken Schwaber	Microsoft Press	1/e, 2004					

	Video Links (NPTEL, SWAYAM)					
No.	Link ID					
1	https://archive.nptel.ac.in/noc/courses/noc19/SEM2/noc19-cs70/					
2	https://www.youtube.com/watch?v=TPEgII1OilU					
3	https://www.youtube.com/watch?v=7Bxdds2siU8					

BUSINESS ANALYTICS

Course Code	PEADT522	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To assist the student in gaining a basic understanding of Business Analytics and its application in various functional areas.
- 2. To introduce the concepts in business analytics, Statistical models, Data Modelling with Tableau and Web analytics.

Module No.	Syllabus Description	Contact Hours
1	Introduction to Business Analytics-Evolution and scope, resource alignment within organization. Applications of business analytics – finance, sensitivity analysis, human resource management, market share estimation, recovery management, risk management, portfolio stress testing, fraud detection and prediction. Decision models, types - descriptive, diagnostic, predictive, and prescriptive. Data Modelling Approach - Data Organisation, Structured Vs Unstructured data, the 5 V's of Business Analytics, Data Analytics framework, Analytics Tools – licensed vs open source. Data cleaning, outliers and outlier's diagnostics.	8
2	Statistical Models- Probability Distributions, Sampling and Sampling Distributions, Statistical Distributions - Normal, Binomial, Poisson. Measures of Central Tendency, Symmetry, and Correlation. Time Series analysis – definition, steps to analyse, importance, components, models and techniques. Forecasting - Forecasting for Management Decisions, Data Patterns and Choice of Forecasting Techniques, Data Collection and Analysis in Forecasting, Forecasting with Smoothing Techniques, Forecasting with Regression.	8

3	Data Modelling with Tableau -Extracting data into Tableau – design flow, file types, data types, data sources, data preparations, dimensions, custom data view, extracting and editing data, transformation of variables, joining and blending data, tableau worksheets, tableau calculations, sort and filters, working with charts, exporting visualizations, formatting and forecasting.	6
4	 Web Analytics-A B Testing, Market Basket Analysis, Classification and Regression Tree, Monte Carlo Simulation.Click stream analytics, anonymous vs. registered user's analysis, Social Media Analytics - User generated content – Page tagging, Server log files, Data abstractions. Sentiment Analysis, Analytics in digital decoding consumer intent, decoding customer sentiments from comments, Text mining from opinion platforms Data Science Toolkits for Business Analytics Clustering - K-Means, DBSCAN, Agglomerative and Hierarchical, Decision Tree – ID3, Factor Analysis, and Segmentation Analysis. Build spread sheet models, analysis using spread sheets – What-if analysis, Break even analysis. 	14

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
C01	Explain the various business analytical concepts, applications and models.	К2
CO2	Make use of statistical models for business analytics in data management.	К3
CO3	Apply tableau tool for business analytics applications.	К3
CO4	Make use of business analytical tools and techniques in Web Analytics and Demonstrate business analysis with data science toolkits.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											3
CO2	3	3	2	2								3
CO3	3	3	2	2								3
CO4	3	3	2	2								3

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Business Analytics: Methods, Models, and Decisions.	Evans, J.R.	Pearson Education	3/e, 2019				

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Business analytics: Data analysis & decision making.	Albright, S. Christian, and Wayne L. Winston	Cengage Learning	1/e, 2014			
2	Web Analytics Demystified: A Marketer's Guide to Understanding How Your Website Affects Your Business	Peterson	Celilo Group Media & Café Press	1/e, 2014			
3	Business Analytics: The art of Modeling with Spreadsheets	Stephen G. Powell, Kenneth R. Baker	John Wiley & Sons	1/e, 2014			

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://nptel.ac.in/courses/106106361					

INFORMATION SYSTEMS

Course Code	PEADT523	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Elective

Course Objectives:

- **1.** To provide students with a thorough understanding of the role and impact of information systems in organizations and society.
- **2.** To develop students' ability to critically analyze and apply information security principles and ethical considerations in the management and implementation of information systems

Module No.	Syllabus Description			
1	Introduction to Information Systems :- Introduction to Information Systems- Overview of Computer-Based Information Systems, Importance of Information Systems to Society, Business Processes- Business Process Reengineering, Business Process Improvement, and Business Process Management- Business Pressures, Organizational Responses, and Information Technology Support- Competitive Advantage and Strategic Information Systems- Ethics and Privacy	9		
2	Information Security and Controls :- Information Security and Controls- Introduction to Information Security- Unintentional Threats to Information Systems - Deliberate Threats to Information Systems - What Organizations Are Doing to Protect -Information Resources - Information Security Controls - Personal Information Asset Protection	9		

3	Information Systems within the Organization :- Information Systems within the Organization- Introduction- Transaction Processing Systems - Functional Area Information Systems- Enterprise Resource Planning Systems- ERP Support for Business Processes- Customer Relationship Management and Supply Chain Management	9
4	Acquiring Information Systems and Applications :- Acquiring Information Systems and Applications - Introduction -Planning for and Justifying IT Applications - Strategies for Acquiring IT Applications -Traditional Systems Development Life Cycle - Alternative Methods and Tools for Systems Development.	9

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. 	60
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome		
CO1	Explain the Role and Impact of Information Systems in Organizations and Society	К2	
CO2	Apply Knowledge of Information Security to Protect Organizational and Personal Assets	К3	
CO3	Describe data and knowledge management principles and their importance in business decision-making	К2	
CO4	Integrate and Manage Information Systems to Improve Organizational Efficiency.	К3	
CO5	Implement Information Systems Using Appropriate Development and Acquisition Strategies	К3	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2							2		1
CO2	2	2	2							2		2
CO3	3	2	2							2		2
CO4	2	2	2							2		2
CO5	3	3	3							2		2

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Introduction to information systems: supporting and transforming business	Rainer, R. Kelly, Brad Prince	Wiley	2/e, 2001				

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Management Information System	C. Laudon Kenneth P. Laudon Jane	Pearson	15/e. 2018					
2	E-Business and E-Commerce Management: Strategy, Implementation and Practice	Dave Chaffey	Pearson	5/e, 2013					
3	Business Process Change	Paul Harmon	Elsevier	4/e, 2019					

DATA COMPRESSION

(Common to CS/CD/CM/CR/AD/AI/AM/CN/CI)

Course Code	PECST524	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To introduce students to basic applications, concepts, and techniques of Data Compression.
- **2.** To develop skills for using recent data compression software to solve practical problems in a variety of disciplines.

Module	Syllabus Description	Contact
No.	Synabus Description	
1	 Basic Compression Techniques :- Data Compression Approaches - Variable-Length Codes, Run-Length Encoding, Space - Filling Curves, Dictionary-Based Methods, Transforms, Quantization. Huffman Encoding - Huffman Decoding, Adaptive Huffman Coding, Facsimile Compression. Run Length Encoding (RLE), RLE Text compression, Dictionary based Coding- LZ77, LZ78, LZW and Deflate: Zip and Gzip compression. 	10
2	Advanced Techniques :- Arithmetic Coding - The Basic Idea, Implementation,Underflow; Image Compression- Introduction, Approaches to Image Compression, History of Gray Codes, Image Transforms, Orthogonal Transforms, The Discrete Cosine Transform, Intermezzo: Statistical Distributions, JPEG, Human Vision and Color, The Wavelet Transform, Filter Banks, WSQ, Fingerprint Compression	10
3	Video Compression :- Video Compression - Analog video, Digital Video, Motion Compensation. MPEG standards MPEG, H.261	8

	Audio Compression :-	
4	Audio Compression - Companding, The Human Auditory System, Heinrich	o
4	Georg Barkhausen, Linear Prediction, µ-Law and A-Law Companding,	0
	Shorten	

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0)
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Describe the fundamental approaches in data compression techniques	K2
CO2	Illustrate various classical data compression techniques	K3
CO3	Illustrate various text and image compression standards	K3
CO4	Describe the video compression mechanisms to reduce the redundancy in video	К3
CO5	Understand the fundamental principles of audio data compression	К2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3
CO5	3	3										3

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	A Concise Introduction to Data Compression	David Salomon	Springer	1/e, 2008					
2	Data compression: The Complete Reference	David Salomon	Springer	3/e, 2004					
3	Introduction to Data Compression	Khalid Sayood	Morgan Kaufman	1/e, 2003					

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Fractal and wavelet Image Compression techniques	Stephen Welstead,	PHI	1/e, 1999					
2	Multimedia System	Sleinreitz	Springer	1/e, 2006					
3	The Data Compression Book	Mark Nelson, Jean-loup Gailly	BPB Publications	1/e, 1996					

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	An Introduction to Information Theory by Prof. Adrish Banerjee zt IIT Kanpur https://onlinecourses.nptel.ac.in/noc22_ee49/preview					

COMPUTATIONAL BIOLOGY

Course Code	PEADT526	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Develop exposure in Computational Tools and Techniques for Biological Data Analysis
- 2. To equip students with hands-on experience in applying computational tools and software to biological problems and to familiarize them to current research trends in computational biology.

Module No.	Syllabus Description	Contact Hours
1	Introduction to biomolecules, DNA, RNA, and Protein: The Central Dogma, Messenger RNA, tRNA, rRNA, Genetic code, Gene Structure and Control, Transcription, translation, introduction to structure of prokaryotic and eukaryote gene	9
2	Introduction to Biological Databases: NCBI, Genbank, Bio sequence formats: FASTA, Sequence alignment: Global Alignment and Local Alignment, Dot Matrix Method, Dynamic Programming Method, Gap Penalties, Amino Acid Scoring Matrices: PAM and BLOSUM, Database Similarity Searching, BLAST, Needleman and Wunsch and Smith– Waterman Method, Multiple Sequence Alignment, scoring function, Clustal,	10
3	Transcriptional Regulatory Networks, Genes and DNA Regulatory Regions, Genetic Interaction Map, Protein Interaction Networks, Experimental methodologies to obtain Protein Interaction Data, Computational methods to Predict Protein: Protein Interactions, Visualization of Protein Interaction Networks, Metabolic Networks, Interacting Partners, Mathematical Representation.	10
4	Next-Generation Sequencing (NGS) Technologies, Illumina Reversible Dye- Terminator Sequencing, Ion Torrent Semiconductor Sequencing, Pacific	9

Biosci	ences Single	Molecule	Real-Time	(SMRT)	Sequencing,	RNA-	
sequer	cing (RNA Se	q), Protein-	DNA Interac	tion Analy	vsis (ChIP-Seq),	, Base	
Callin	g, FASTQ File	e Format, a	and Base Qu	ality Score	e, NGS Data Q	uality	
Contro	and Prepro	cessing, R	eads Mappin	ng, Mappi	ing Approaches	s and	
Algori	thms						

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Demonstrate the structure and function of DNA, RNA proteins, Gene structure and process of transfer of information from DNA to protein	К2
CO2	Identify biological data formats and databases and employ similarity searching tools and algorithms to align sequences to highlight the similarity	К3
CO3	Demonstrate Networks in Biology, types of networks and its representation	К3
CO4	Explain Next Generation sequencing Technologies and DNA Protein interaction analysis	К3
CO5	Apply computational tools and algorithms to analyze NGS data.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3
CO5	3	3	3									3

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Introduction to Bioinformatics	Lesk, Arthur M	Oxford University Press	5/e. 2019				
2	Bioinformatics and Computational Biology A Primer for Biologists	Basant K. Tiwary	Springer Nature Singapore	1/e, 2022				
3	Bioinformatics An Introduction	Jeremy Ramsden	Springer London	1/e,2016				
4	An Introduction to Bioinformatics Algorithms	Neil C. Jones, Pavel Pevzner	MIT Press	1/e, 2004				
5	Next-Generation Sequencing Data Analysis	Wang, Xinkun	CRC Press	1/e, 2016				

	Reference Books						
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Bioinformatics and Computational Biology: A Primer for Biologists	Tiwary, Basant K	Springer	1/e, 2022			
2	Quickstart Molecular Biology: An Introductory Course for Mathematicians, Physicists, and Computational Scientists	Benfey, Philip N.	Cold Spring Harbor Laboratory Press	1/e. 2014			
3	Bioinformatics	Baxevanis, Andreas D., Gary D. Bader, and David S. Wishart	John Wiley & Sons	4/e, 2020			
4	Essentials of Bioinformatics	Shaik, Noor Ahmad, et al	Springer	1/e, 2019			
5	Applied bioinformatics	Selzer, Paul M., Richard J. Marhöfer, and Andreas Rohwer	Springer, Verlag	1/e, 2008			
6	Bioinformatics: Methods and Applications	S C Rastogi, N Mendiratta and P Rastogi	PHI Learning Private Limited	4/e, 2013			
7	Fundamental Concepts of Bioinformatics	D E Krane and M L Raymer	Pearson Education	1/e. 2006			
8	Bioinformatics: Sequence and Genome Analysis	Bradley E. Shapiro and Jennifer J. Dudock	Garland Science	1/e, 2007			

	Video Links (NPTEL, SWAYAM)					
Module No.						
1	https://onlinecourses.swayam2.ac.in/cec21_bt04/preview					
2	https://onlinecourses.nptel.ac.in/noc20_bt08/preview					
3	https://onlinecourses.nptel.ac.in/noc23_bt34/preview					
4	https://onlinecourses.nptel.ac.in/noc23_bt34/preview					

COMPUTER GRAPHICS & MULTIMEDIA

(Common to CS/CD/CR/CA/AD)

Course Code	PECST527	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To provide strong technological concepts in computer graphics including the threedimensional environment representation in a computer, transformation of 2D/3D objects and basic mathematical techniques and algorithms used to build applications.
- **2.** To give a good understanding of the multimedia frameworks for audio/video domains and different compression algorithms.

Module	Syllabus Description				
No.	Synabus Description				
1	 Basics of Computer graphics - Basics of Computer Graphics and its applications. Video Display devices - LED, OLED, LCD, PDP and FED and reflective displays. Random and Raster scan displays and systems. Line and Circle drawing Algorithms - Line drawing algorithms-Bresenham's algorithm, Liang-Barsky Algorithm, Circle drawing algorithms - Midpoint Circle generation algorithm, Bresenham's Circle drawing algorithm. 	10			
2	 Geometric transformations - 2D and 3D basic transformations - Translation, Rotation, Scaling, Reflection and Shearing, Matrix representations and homogeneous coordinates. Filled Area Primitives - Scan line polygon filling, Boundary filling and flood filling. 	8			
3	Transformations and Clipping Algorithms - Window to viewport transformation. Cohen Sutherland and Midpoint subdivision line clipping	8			

	algorithms, Sutherland Hodgeman and Weiler Atherton Polygon clipping							
	algorithms.							
	Three dimensional graphics - Three dimensional viewing pipeline.							
	Projections- Parallel and Perspective projections. Visible surface detection							
	algorithms- Back face detection, Depth buffer algorithm, Scan line							
	algorithm, A buffer algorithm.							
	Fundamental of Multimedia - Introduction to Multimedia, Authoring and							
	Tools, Graphics and Image Data Representations, Popular File Formats,							
	Fundamental Concepts and types of Video, Basics of Digital Audio and its							
4	types.	9						
-	Compression Methods - Lossless Compression Algorithms- Run-Length							
	Coding, Arithmetic Coding. Lossy Compression Algorithms- Transform							
	Coding. JPEG and JPEG-LS Standard Image Compression, H.261. Video							
	Compression Technique.							

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendanc	ce Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	00
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
C01	Understand the principles of computer graphics and displays	K2
CO2	Illustrate line drawing, circle drawing and polygon filling algorithms	K3
CO3	Illustrate 2D and 3D basic transformations and matrix representation	К3
CO4	Demonstrate different clipping algorithms and 3D viewing pipeline.	К3
C05	Summarize the multimedia features and specific compression algorithms.	К2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3	3								3
CO3	3	3	3	3								3
CO4	3	3	3	3								3
CO5	3	3	3									3

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Computer Graphics : Algorithms and Implementations	D. P. Mukherjee, Debasish Jana	PHI	1/e, 2010			
2	Computer Graphics with OpenGL	Donald Hearn, M. Pauline Baker and Warren Carithers	РНІ	4/e, 2013			
3	Fundamentals of Multimedia	Ze-Nian Li and Mark S. Drew	Pearson	2003			

		Reference Books				
Sl. No	Title of the BookName of the Author/s		Title of the Book Name of the Author		Name of the Publisher	Edition and Year
1	Introduction to Flat Panel Displays	Jiun-Haw Lee, I-Chun Cheng, Hong Hua, Shin- Tson Wu	Wiley	1/e, 2020		
2	Computer Graphics and Multimedia	ITL ESL	Pearson	1/e, 2013		
3	Computer Graphics	Zhigang Xiang and Roy Plastock	McGraw Hill	2/e, 2000		
4	Principles of Interactive Computer Graphics	William M. Newman and Robert F. Sproull	McGraw Hill	1/e, 2001		
5	Procedural Elements for Computer Graphics	David F. Rogers	McGraw Hill	1/e, 2017		
6	Computer Graphics	Donald D Hearn, M Pauline Baker	Pearson	2/e, 2002		

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1, 2, 3	Computer Graphics By Prof. Samit Bhattacharya at IIT Guwahati https://onlinecourses.nptel.ac.in/noc20_cs90/preview					
4	Web Based Technologies and Multimedia Applications by Prof. P. V. Suresh at Indira GandhiNational Open Universityhttps://onlinecourses.swayam2.ac.in/nou20_cs05/preview					

ADVANCED COMPUTER ARCHITECTURE

Course Code	PECST528	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PBCST404	Course Type	Theory

Course Objectives:

- **1.** To introduce the advanced processor architectures including parallelism concepts in Programming of multiprocessor and multi computers.
- 2. To provide detailed understanding about data flow in computer architectures.

Module No.	Syllabus Description	Contact Hours
1	Introduction – The impact of hardware and software technology trends Self review – Instruction set Architecture, Memory addressing, addressing modes Class of Computers, Concept of Computer Hardware and Organization (P15, 5th Edition) Measuring, Reporting and Summarizing Performance, Benchmarks – Desktop and Server Amdahl's Law, Processor Performance Equation <u>Beyond the books</u> – Visit www.spec.org. Explore the High Performance Computing benchmarks and compare the results submitted by different vendors for the same benchmark. Are you able to appreciate the need for benchmarks to compare performance? What are retired benchmarks? Can you write a paper and publish results based on a retired benchmark?	9
2	Review the basic Concepts of Parallel Processing and Pipelining Instruction Level Parallelism, data dependencies and hazards Different types of dependences, Compiler Techniques for ILP, Branch Prediction – Correlating	9

	branch predictor Dynamic Scheduling - Idea, Introduction to Tomasulo's					
	scheme. Register Renaming Hardware Speculation, Reorder Buffers					
	Multiple issue and static scheduling, VLIW					
	Data Level Parallelism. Vector Processors - How do they work, Memory					
	Banks, Stride, Scatter Gather. SIMD-comparison with vector GPU,					
	Comparison of loops in C vs CUDA NVIDIA GPU Memory structure					
	Vector Processor vs GPU, Multimedia SIMD computers vs GPU					
3	Multiprocessor Architecture, Centralized shared memory architecture Cache	9				
	coherence and snooping protocol (Implementation details - not required).					
	Performance of Symmetric Shared-Memory Processors. Distributed Shared					
	Memory and Directory based protocol - basics. Synchronization - Basic					
	Hardware Primtives. Memory Consistency Models – Sequential and relaxed					
	Warehouse Scale Computers - Goals and requirements. Programming					
	frameworks for Batch processing - Map reduce and Hadoop Computer					
	Architecture of Warehouse-scale computers Moore's Law, Dennard Scaling,					
	Dark Silicon and the transition towards Heterogeneous Architectures					
	Asymmetric multi-core architecture - Static and Dynamic (Overall idea,					
4	example processors) Functional Heterogeneous Multicore architecture -	9				
	GPUs, Accelerators, Reconfigurable Computing Beyond the textbook -					
	Identify the processor used in your PC and mobile phone. Study about its					
	architecture, is it homogeneous or heterogeneous, does it use GPUs, what					
	information can you gather about it from the manufacturer's website -					
	Discuss in the class					

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0)
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Enumerate the different classes of computers and where they are used in everyday life.	K2
CO2	Compute the effect of hardware/software enhancements on the speedup of a processor using Amdahl's law.	К3
СО3	Interpret possible dependencies that can cause hazards in a given block of code.	К3
CO4	Summarize different strategies followed to ensure Instruction Level Parallelism.	К2
CO5	Compare different strategies followed to ensure Instruction Level Parallelism and different strategies followed to ensure Data Parallelism.	К3
CO6	Illustrate the need for memory consistency models and cache coherence protocols and explain the principle behind it.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3	3								3
CO5	3	3	3	3								3
CO6	3	3	3	3								3

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Computer architecture: A Quantitative Approach.	Hennessy, J. and Patterson, D	Morgan Kaufman	5/e, 2012				
2	The Dark Side of Silicon: Energy Efficient Computing in the Dark Silicon Era	Kanduri, Anil, et al.	Springer	1/e, 2017				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Computer Architecture	Gérard Blanchet Bertrand Dupouy	Wiley	1/e, 2013				
2	Advanced Computer Architectures	Sajjan C Shiva	Taylor & Fancis	1/e, 2018				
3	Computer Architecture	Charles Fox	no starch press	1/e, 2024				

	Video Links (NPTEL, SWAYAM)				
No.	Link ID				
1	https://archive.nptel.ac.in/courses/106/103/106103206/				

Course Code	PEADT525	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2Hr. 30 Mins.
Prerequisites (if any)	None		

FUNDAMENTALS OF DIGITAL IMAGE PROCESSING

Course Objectives:

- 1. To provide foundational concepts of digital image representation, processing, and analysis, including image digitization, color theory, and various data structures, to effectively manipulate and analyze digital images.
- 2. To help the learner develop the ability to implement advanced image processing techniques, such as image segmentation, edge detection, and image compression, while critically evaluating the performance and quality of these methods in practical applications.

Module No.	Syllabus Description	Contact Hours
1	The image, its representation and properties - Image representations, Image digitization, Sampling, Quantization, Digital image properties, Metric and topological properties of digital images, Histograms, Entropy, Visual perception of the image - contrast, acuity, Image quality, Noise in images; Color images - Physics of color, Color perceived by humans, Color spaces, Color constancy; Data structures for image analysis - Levels of image data representation, Traditional image data structures - matrices, Chains, Topological data structures - Relational structures, Hierarchical Data Structures, Pyramids, Quadtrees, Other pyramidal structures.	9
2	 Image pre-processing - Pixel brightness transformations-, Position-dependent brightness correction, Gray-scale transformation, Geometric Transformations - Pixel coordinate transformations, Brightness interpolation. Local pre-processing, Image Smoothing, Edge detectors, Zero-crossings the second derivative, Scale in Image Processing, Canny Edge Detection, Parametric Edge Models, Edges Multi-spectral images,, Line detection by 	9

	local pre-processing operators, Detection of corners (interest points),	
	Image Restoration - Degradations that are easy to restore, Inverse Filtering,	
	Wiener Filtering.	
	Image Segmentation - Thresholding, Threshold Detection Methods- Optimal	
	thresholding, Multi-spectral thresholding, Edge-based segmentation, Edge	
	Image Thresholding, Edge Relaxation, Border Tracing, Border Detection As	
	Graph Searching, Border Detection As Dynamic Programming, Hough	
	Transforms, Border Detection Using Border location information,	
	Region construction from borders, Region-based segmentation - Region	
	merging, Region Splitting - Splitting And Merging, Watershed segmentation.	
3	norging, region spitting "spitting rind merging, watershed segmentation.	9
	Mean shift segmentation, Fuzzy connectivity, Introduction to 3D graph-	
	based image segmentation	
	based image segmentation	
	Matching, Template Matching, Control Strategies Templating, Evaluation	
	Issues In Segmentation.	
	Image Transforms - 2D Fourier transform, Discrete Cosine Transform,	
	Wavelet transform, Eigen-analysis, Singular value decomposition, Principal	
	component analysis.	
	Image texture - Statistical texture description, Methods Based On Spatial	
	frequencies, Co-occurrence matrices, Edge Frequency, Primitive	0
4	Length(runlength), texture energy measures, Local Binary Patterns LBPs,	9
	Fractal texture description, Other Statistical Methods Of Texture Description	
	Introduction to Object recognition - Knowledge representation, Statistical	
	pattern recognition, Classification principles, Minimum distance classifier	
	learning and classification. Nearest neighbor search with K-D trees.	

Continuous Internal Evaluation Marks (CIE):

Attendance	Internal Ex	Evaluate	Analyse	Total
5	15	10	10	40

Criteria for Evaluation(Evaluate and Analyse): 20 marks

1. Understanding of Core Concepts (20%)

- Fundamentals: Grasp of basic image processing concepts such as pixel operations, color models, and image transformations.
- Algorithms: Knowledge of common image processing algorithms like filtering, edge detection, and image segmentation.
- Mathematics: Proficiency in the mathematical principles underlying image processing techniques, such as linear algebra and calculus.
- 2. Application of Techniques (25%)
 - Practical Skills: Ability to implement and apply image processing techniques using software tools or programming languages (e.g., MATLAB, Python with libraries like OpenCV).
 - Problem Solving: Capability to choose appropriate algorithms for specific image processing tasks and troubleshoot issues effectively.
- 3. Analysis and Interpretation (25%)
 - Evaluation: Skill in analyzing the results of image processing operations and evaluating their effectiveness.
 - Comparative Analysis: Ability to compare and contrast different methods or algorithms and justify the choice of one over another.
- 4. . Project and Case Study Work (30%)
 - Project Execution: Ability to complete a project involving image processing from start to finish, including defining objectives, implementing solutions, and presenting findings.
 - Case Study Analysis: Skill in analyzing real-world case studies or datasets to apply theoretical knowledge and solve practical problems.

Sample problems for assessment

- Develop a program that reads an input image and manipulates its resolution in the spatial and gray domains; for a range of images (synthetic, of man-made objects, of natural scenes.) conduct experiments and make an assessment on the minimum resolution that leaves the image recognizable.
- Write a program that computes an image histogram; plot the histogram of a range of images. Also acquire an RGB image and develop a program to obtain the YIQ and HSI representations. Also plot the histogram of the three components of a color image when represented as (a) RGB (b) YIQ (c) HSI
- 3. Develop programs for spatial domain image preprocessing techniques and provide a quantitative analysis of the effectiveness of different methods.
- Develop a program for training and classification using the minimum distance classifier. Assess classification correctness. (a) Train and test using data sets TRAIN1 and TEST1. (b) Train and test using data sets TRAIN2 and TEST2.
- 5. Using the World Wide Web, find several images of dissimilar homogeneous textures (Brodatz textures [Brodatz, 1966] from a Web-based database may be a good choice)

1. Create your personal database TD1 from these images of at least 5 texture type ranging gradually from fine to coarse.

2. Create a texture database TD2 of three dissimilar texture classes with at least ten images belonging to each class.

3. Create a database TD3 of at least three homogeneous directional textures (use preferably several images from each class) and rotate each at 9 random angles this will form a database of 10 directional images for each texture.

End Semester Examination Marks (ESE):

Part A	Part B	Total
• 2 Questions from each	2 questions will be given from each module, out of	
module.	which 1 question should be answered. Each	
• Total of 8 Questions,	question can have a maximum of 3 subdivisions.	60
each carrying 3 marks	Each question carries 9 marks.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Analyse the properties of monochrome/colour images along with the effect of different types of noise in images.	K4
CO2	Apply different preprocessing techniques to visualize image enhancement	К3
CO3	Understand and evaluate the different methods of image segmentation techniques.	K5
CO4	Analyse and evaluate the various transforms and the different image compression techniques used in image processing	K5
CO5	Create a feature database for an object recognition problem.	K6

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									2
CO2	3	3	3	3								2
CO3	3	3	3	3								2
CO4	3	3	3	3								2
CO5	3	3	3	3								2

	Text Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	Image Processing, Analysis and Machine Vision	Milan Sonka, Vaclav Hlavac, Roger Boyle	Cengage	4/e, 2015							

	Reference Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	Fundamental of Digital Image Processing	Anil K. Jain	Pearson	1/e, 2015							
2	Digital image Processing	Ralph Gonzalez, Richard Woods	Pearson	4/e, 2018							
3	Digital Image Processing	S Jayaraman, S Esakkirajan, T Veerakumar	McGraw Hill	2/e, 2020							
4	Fundamental of Digital Image Processing	Anil K. Jain	Pearson	1/e, 2015							

	Video Links (NPTEL, SWAYAM)								
Module No.	Link ID								
1	https://archive.nptel.ac.in/courses/117/105/117105135/								
2	https://archive.nptel.ac.in/courses/106/105/106105032/								

ROBOTICS LAB

Course Code	PCADL507	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Lab

Course Objectives :

1. To provide students with exposure to the common sensor and actuator interfacing, setting up mobile robots and familiarising intelligent systems.

Expt. No.	Experiments
PART A	
1	Familiarisation of Arduino IDE, Arduino microcontroller I/O interfacing(LED, LCD, Serial Monitor)
2	Interfacing IR and Ultrasonic sensor with Arduino
3	Interfacing DC motors with arduino - speed and direction control
4	Interfacing Servo Motors with Arduino - angle of rotation
5	Familiarisation of Rasberry Pi and its I/O interfacing
6	Mobile Robot assembly
7	Networking with Arduino using BLE
PART B	
8	Writing a Simple Publisher and Subscriber, Simple Service and Client, Recording and playing back data, Reading messages from a bag file(Python/C++)
9	Localization of a mobile robot using LIDAR (ROS)

10	Implementing a weather station using Raspberry pi
11	Line following Robot using IR sensor
12	Image Recognition using ESP32 CAM module
13	Obstacle avoidance of a mobile robot while moving to a point.
14	Navigation simulation using turtlebot in ROS

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

• Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.

• Endorsement by External Examiner: The external examiner shall endorse the record

At the end of the course students should be able to:

	Course Outcome						
CO1	Interface different peripherals to Arduino and Rasberry Pi.	К3					
CO2	Assemble a mobile robot with different sensors and actuators	К3					
CO3	Familiarise about localisation of mobile robots.	К3					
CO4	Impart intelligence to robot using standard algorithms.	K3					
CO5	Familiarise the robot navigation.	K3					

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2										2
CO2	2	2										3
CO3	2	2			2							3
CO4	2	3	3	3	3							3
CO5	2	3	3	3	3							3

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

Text Books				
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Introduction to Autonomous Mobile Robots	Siegwart, Roland	MIT Press,	2/e, 2004
2	Robotics, Vision and Control: Fundamental Algorithms in MATLAB,	Peter Corke	Springer	2021
3	Introduction to Robotics	John G Craig	Pearson Education Asia	2002
4	Introduction to Robotics	SK Saha	Mc Graw Hill Education	2004
5	Robotics and Control	RK Mittal and I J Nagrath	Tata McGraw Hill	2003
6	Robotic Tactile Sensing	Dahiya, Ravinder S., Valle, Maurizio	Springer	2013
7	https://emanual.robotis.com/docs/en/platfor	m/turtlebot3/simulation/		

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

•Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

- 1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)
 - Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
 - Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
 - Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
 - Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

DATA ANALYTICS LAB

Course Code	PCCDL508	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCST503	Course Type	Lab

Course Objectives:

- To impart the knowledge on the Big Data Technologies for processing the Different types of Data. Configure Hadoop and perform File Management Tasks
- 2. To enable the learner to analyze big data using machine learning techniques

Expt. No.	Experiments
1	Set up and install Hadoop and explore the various shell commands in Hadoop and implement file management tasks.
2	Implement a word count program using Map Reduce to find the number of occurrences of specific keywords from an input file.
3	Using the structure of the Word Count program, write a Hadoop program that calculates the average word length of all words that start with each character.
4	Write a Map Reduce program for removing stop words from the given text files
5	Implement matrix multiplication with Hadoop Map Reduce
6	Implement Pig Latin scripts to sort, group, join, project, and filter data.
7	Implementing Database Operations on Hive
8	Write an R program to find the factorial and check for palindromes.
9	Implement a program to find variance, covariance and correlation between different types of attributes
10	Write an R program to solve linear regression and make predictions.
11	Write an R program to solve logistic regression.

12	Implement SVM and Decision tree Classifier using R
13	Implement KNN and Naive Bayes Classifier using R
14	Implement a Spark program that does the following: i) Count the total number of observations included in the dataset ii). Count the number of years over which observations have been made iii) Display the oldest and the newest year of observation
15	Implement clustering techniques using SPARK.

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

• Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.

• Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Configure Hadoop and perform File Management Tasks	K3
CO2	Implement different tasks using Hadoop Map Reduce programming model	К3
CO3	Apply different data processing tools like Pig and Hive to real time issues like weather dataset and sales of a company	К3
CO4	Implement data extraction from files and analyze big data using machine learning techniques in R.	К3
CO5	Illustrate the knowledge of Spark to analyze data in real-life scenarios.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3				3			2		1		3
CO2	3	3	2	1	3			2		1		3
CO3	3	3	2	1	3			2		1		3
CO4	3	3	2	1	3			2		1		3
CO5	3	3	2	1	3			2		1		3

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Mastering Apache Spark	Mike Frampton	Packt Publishing	1/e,2015			
2	Hadoop: The Definitive Guide	Tom White	O'reilly Media	4/e, 2015			
3	Machine Learning with Spark	Nick Pentreath	Pract Publishing	1/e, 2015			
4	Big Data Analytics with Spark: A Practitioner's Guide to Using Spark for Large Scale Data Analysis	Mohammed Gulle	Apress	1/e.2015			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Big Data Fundamentals: Concepts, Drivers & Techniques	Thomas Erl, Wajid Khattak, and Paul Buhler	Pearson	1/e,2016			
2	Programming Pig Dataflow Scripting with Hadoop	Alan Gates	O'Reilly	1/e. 2011			
3	Programming Hive	Jason Rutherglen, Dean Wampler, Edward Caprialo	O'Reilly	1/e, 2012			
4	BIG DATA	Black Book TM	DreamTech	1/e,2016			

Video Links (NPTEL, SWAYAM)					
Module No.	Link ID				
1	Big Data Computing: https://nptel.ac.in/courses/106104189				
2	Data Science on Apache Spark. Databricks. https://databricks.com/blog/2015/06/01/databricks- launches-moocdata-science-on-spark				
3	Advanced R Programming for Data Analytics in Business: https://nptel.ac.in/courses/110104513				

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- •Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

•Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

SEMESTER 6

ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

DEEP LEARNING

Course Code	PCADT601	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCST503	Course Type	Theory

Course Objectives:

- 1. To get an insight into various design parameters of a deep learning model.
- **2.** To introduce deep learning architectures for various domains such as text, multimedia and GenAI tools.

Module No.	Syllabus Description	Contact Hours
1	Introduction to Deep learning : Introduction, Deep feed forward network. Activation functions – Sign, Sigmoid, Tanh, ReLU, leaky ReLU, Hard Tanh, Softmax. Loss function. Training a Neural Network with Backpropagation. Practical issues in neural network training. Overfitting, Underfitting, Hyper parameters and Validation sets, Estimators -Bias and Variance.	10
2	Network Design parameters: Introduction, setup and initialization Kaiming, Xavier weight initialization, Vanishing and exploding gradient problems, Optimization techniques - Gradient Descent (GD), Stochastic GD-GD with momentum- GD with Nesterov momentum; Parameter specific learning rates: AdaGrad- RMSProp- Adam; Regularization Techniques - L1 and L2 regularization- Early stopping. Dataset augmentation- Parameter tying and sharing- Ensemble methods- Dropout- Batch normalization.	12
3	Convolutional Neural Network: Basic structure of a CNN; Basic layers and operations in CNN: Convolution operation- effect of stride and padding-Fully Connected layers- CNN layers; Building a CNN model: Training a CNN; Estimation of Tensor size number of features in CNN layers, Transfer	11

SYLLABUS

4

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Outline the standard regularization and optimization techniques for the effective training of deep neural networks	K2
CO2	Use Convolutional Neural Network (CNN) models and pretrained networks for different use cases.	К3
CO3	Apply the concepts of Recurrent Neural Network, its variants and familiarize natural language processing fundamentals.	К3
CO4	Apply the concepts of auto encoder, generative models for advanced AI operations.	К3
CO5	Apply the concept of generative models for advanced AI operations	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3								3
CO2	3	3	3	3	3							3
CO3	3	3	3	3	3							3
CO4	3	3	3	3								3
CO5	3	3	3	3								3

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Deep Learning	Goodfellow, I., Bengio,Y., and Courville, A.	MIT Press	1/e, 2016				
2	Neural Networks and Deep Learning	Aggarwal, Charu C	Springer International	1/e, 2018				

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Deep Learning, Core Concepts, Methods and Applications	M Gopal	Pearson Education	1/e, 2022
2	Fundamentals of Deep Learning: Designing Next- Generation Machine Intelligence Algorithm	Nikhil Buduma and Nicholas Locascio	O'Reilly Media	1/e, 2017

	Video Links (NPTEL, SWAYAM)			
Module No.	Link ID			
1	https:d21.ai			
2	https://nptel.ac.in/courses/106106184			
3	https://cs230.stanford.edu/			
4	https://study.iitm.ac.in/ds/course_pages/BSCS3004.html			

INTERNET OF THINGS

Course Code	PCADT602	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- **1.** To understand the fundamentals of IoT architecture, including its origins, impact, and the convergence with IT.
- **2.** To explore the components of IoT networks such as smart objects, sensors, actuators, and communication technologies, with a focus on IP optimization and application protocols.
- **3.** To learn about data analytics for IoT, covering machine learning, big data tools, and methods for securing IoT systems.

Module No.	Syllabus Description	Contact Hours
1	IoT Architecture - What is IoT, Genesis of IoT, IoT and Digitization, IoT Impact, Convergence of IT and IoT, IoT Challenges, IoT Network Architecture and Design, Drivers Behind New Network Architectures, Comparing IoT Architectures, A Simplified IoT Architecture, The Core IoT Functional Stack, IoT Data Management and Compute Stack.	8
2	 Engineering IoT Networks - Smart Objects: The "Things" in IoT, Sensors, Actuators, and Smart Objects, Sensor Networks, Connecting Smart Objects, Communications Criteria, IoT Access Technologies. IoT Network Layer: IP as the IoT Network Layer, The Business Case for IP, The need for Optimization, Optimizing IP for IoT, 	14
3	IoT protocols - Application Protocols for IoT(XMPP, MQTT, CoAP, SOAP, HTTP only), Transport Layer, IoT Application Transport Methods.	12

	Data Analytics for IoT: Data and Analytics for IoT, An Introduction to Data Analytics for IoT, Machine Learning, Big Data Analytics Tools and Technology.	
4	Developing IoT Systems - IoT Logical Design using Python, IoT Physical Devices and Endpoints - Raspberry Pi interfaces, Programming Raspberry Pi using Python, WAMP. Developing Tools: Arduino, Apache NetBeans, Kinoma, IBM Watson IoT, Node-RED Case study: IoT in Agriculture, IoT in Smart city.	10

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. 	60
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the fundamentals of IoT architecture, including its genesis and impact	К2
CO2	Learn to engineer IoT networks with smart objects, sensors, and actuators.	К2
CO3	Become familiar with IoT protocols such as XMPP, MQTT, CoAP, SOAP, and HTTP.	К2
CO4	Develop skills in data analytics for IoT, using machine learning and big data tools	К3
CO5	Gain practical experience in developing IoT systems using Python, Raspberry Pi, and Arduino	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											
CO2	3	3			3							
CO3	3											
CO4	3											
CO5	3		3		3		3		3	3	3	3

	Text Books					
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	IoT Fundamentals Networking Technologies, Protocols, and use cases for the Internet of Things	David Hames, Gonzalo Salguerio, Patrick Grossetete Robert Barton, Jerome Henry	Pearson Education	1/e, 2016		
2	Internet of Things: A hands-on approach	Arshadeep Bahga, Vijay Madisetti	University Press	1/e, 2014		

	Reference Books					
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Internet of Things: Architecture and Design Principles	Rajkamal	McGraw Hill	1/e,2017		
2	Architecting the Internet of Things	Dieter Uckelmann, Mark Harrison, Florian Michahelles	Springer Science & Business Media,	1/e, 2011		
3	Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems	Dr. Ovidiu Vermesan, Dr. Peter Friess,	River Publishers	1/e, 2013		
4	Programming Arduino: Getting Started with Sketches	Simon Monk	McGraw Hill	1/e, 2016		

	Video Links (NPTEL, SWAYAM)
Module No.	Link ID
1,2,3	https://onlinecourses.nptel.ac.in/noc22_cs53/preview

SOFTWARE TESTING

(Common to CS/CA/CM/CD/CR/AM/AD)

Course Code	PECST631	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To Cultivate proficiency in software testing methodologies and techniques.
- 2. To Foster expertise in software testing tools and technologies.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Introduction to Software Testing & Automation:- Introduction to Software Testing - Concepts, importance of testing, software quality, and real-world failures (e.g., Ariane 5, Therac 25); Software Testing Processes - Levels of thinking in testing; Testing Terminologies - Verification, validation, fault, error, bug, test cases, and coverage criteria; Types of Testing - Unit, Integration, System, Acceptance, Performance (stress, usability, regression), and Security Testing; Industry Trends - AI in test case automation, Introduction to GenAI in testing; Testing Methods - Black-Box, White-Box, and Grey- Box Testing; Automation in Testing - Introduction to automation tools (e.g., Selenium, Cypress, JUnit); Case Study- Automation of Unit	8
	Testing and Mutation Testing using JUnit.	
2	Unit Testing, Mutation Testing & AI-Driven Automation:- Unit Testing- Static and Dynamic Unit Testing, control flow testing, data flow testing, domain testing; Mutation Testing- Mutation operators, mutants, mutation score, and modern mutation testing tools (e.g., Muclipse); JUnit Framework - Automation of unit testing, frameworks for testing in real-world projects; AI in Testing - GenAI for test case	8

	generation and optimization, impact on automation; Industry Tools -	
	Application of AI-driven testing tools in automation and predictive	
	testing; Case Study - Mutation testing using JUnit, AI-enhanced test case	
	automation.	
	Advanced White Box Testing & Security Testing:-	
	Graph Coverage Criteria - Node, edge, and path coverage; prime path	
	and round trip coverage; Data Flow Criteria - du paths, du pairs,	
	subsumption relationships; Graph Coverage for Code - Control flow	
	graphs (CFGs) for complex structures (e.g., loops, exceptions); Graph	
3	Coverage for Design Elements - Call graphs, class inheritance testing,	10
	and coupling data-flow pairs; Security Testing - Fundamentals, tools	
	(OWASP, Burp Suite), and their role in protecting modern applications;	
	Case Study - Application of graph based testing and security testing	
	using industry standard tools.	
	Black Box Testing, Grey Box Testing, and Responsive Testing:-	
	Black Box Testing - Input space partitioning, domain testing, functional	
	testing (equivalence class partitioning, boundary value analysis, decision	
	tables, random testing); Grey Box Testing - Introduction, advantages,	
	and methodologies (matrix testing, regression testing, orthogonal array	
	testing); Performance Testing - Network latency testing, browser	
4	compatibility, responsive testing across multiple devices (e.g.,	10
	BrowserStack, LambdaTest); Introduction to PEX - Symbolic execution,	10
	parameterized unit testing, symbolic execution trees, and their	
	application; GenAI in Testing - Advanced use cases for predictive and	
	responsive testing across devices and environments; Case Study-	
	Implementation of black-box, grey-box, and responsive testing using	
	PEX and AI-driven tools.	

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0)
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Demonstrate the ability to apply a range of software testing techniques, including unit testing using JUnit and automation tools.	K2			
CO2	Illustrate using appropriate tools the mutation testing method for a given piece of code to identify hidden defects that can't be detected using other testing methods.	К3			
CO3	Explain and apply graph coverage criteria in terms of control flow and data flow graphs to improve code quality.	K2			
CO4	Demonstrate the importance of black-box approaches in terms of Domain and Functional Testing	К3			
C05	Illustrate the importance of security, compatibility, and performance testing across devices.	К3			
CO6	Use advanced tools like PEX to perform symbolic execution and optimize test case generation and also leverage AI tools for automated test case prediction and symbolic execution with PEX.	К3			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Manning Table (Mapping of Course Outcomes to	Program Outcomes)
CO I O mapping I abic (i	suppling of Course Succomes to	r rogram Outcomes

	PO1		PO2 PO3	PO4 PO5	PO5	5 PO6		PO8	PO9	PO1	PO1	PO1
	101	102	105	104	105	100	107	100	107	0	1	2
CO1	3	3	3									3
CO2	3	3	3	3	3							3
CO3	3	3	3									3
CO4	3	3	3	3								3
CO5	3	3	3		3							3
CO6	3	3	3	3	3							3

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Introduction to Software Testing.	Paul Ammann, Jeff Offutt	Cambridge University Press	2/e, 2016				
2	Software Testing and Quality Assurance : Theory and Practice	Kshirasagar Naik, Priyadarshi Tripathy	Wiley	1/e, 2008				

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Software Testing	Ron Patten	Pearson	2/e, 2005			
2	Software Testing: A Craftsman's Approach	Paul C. Jorgensen	CRC Press	4/e, 2017			
3	Foundations of Software Testing	Dorothy Graham, Rex Black, Erik van Veenendaal	Cengage	4/e, 2021			
4	The Art of Software Testing	Glenford J. Myers, Tom Badgett, Corey Sandler	Wiley	3/e, 2011			

	Video Links (NPTEL, SWAYAM)						
Module Link ID							
No.							
1	https://archive.nptel.ac.in/courses/106/101/106101163/						
2	https://archive.nptel.ac.in/courses/106/101/106101163/						
3	https://archive.nptel.ac.in/courses/106/101/106101163/						
4	https://archive.nptel.ac.in/courses/106/101/106101163/						

COMPUTATIONAL LINGUISTICS

Course Code	PEADT632	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- **1.** To introduce the core concepts and methodologies in computational linguistics.
- 2. To equip the practical skills in applying language processing tools, such as Python and NLTK.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
	Linguistic Essentials- Parts of Speech and Morphology, Nouns and Pronouns,	
	Words that Accompany Nouns: Determiners and Adjectives, Verbs, Other	
	Parts of Speech, Phrase Structure, Phrase Structure Grammars, Semantics and	
	Pragmatics, Corpus-Based Work, The Ambiguity of Language (NLP	
	Challenges).	
1		12
	Mathematical Essentials- Probability Theory, Probability Space, Conditional	
	Probability and Independence, Bayes Theorem, Random Variables,	
	Expectation and Variance, Notation, Joint and Conditional Distributions,	
	Standard Distributions, Bayesian Statistics.	
	Statistical Inference- n-gram Models over Sparse Data, Bins: Forming	
	Equivalence Classes, Reliability vs Discrimination, n-gram Models	
2	Markov Models- Hidden Markov Models, Use of HMMs, General Form of HMM, Probability of an Observation, Best State Sequence	8

3	Word Sense Disambiguation- Methodological Preliminaries, Supervised and unsupervised learning, Pseudowords, Upper and lower bounds on performance, Supervised Disambiguation, Bayesian classification-, Dictionary based Disambiguation, Disambiguation based on sense definitions, Thesaurus based disambiguation, Lexical Acquisition, Evaluation Measures, Verb subcategorization, Attachment Ambiguity, PP attachment, Selectional references, Semantic Similarity, Word2Vec and Doc2Vec	10
4	Grammar and tools: Part-of-Speech Tagging, The Information Sources in Tagging, Markov Model Taggers, Hidden Markov Model Taggers, Applying HMMs to POS Tagging, Probabilistic Context Free Grammars, Some Features of PCFGs, Questions for PCFGs, The Probability of a String, Using Inside Probabilities, Using Outside Probabilities, Finding the Most Likely Parse for a Sentence, Parsing for Disambiguation, Parsing Model versus Language Model, Language Processing with Python using NLTK	10

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 	60
(8x3 =24 marks)	subdivisions. (4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the fundamental linguistic concepts, including parts of speech, morphology, phrase structure, semantics, and pragmatics to analyze natural language data.	K2
CO2	Describe probabilistic and statistical models, such as n-gram models and Hidden Markov Models (HMMs), to process and predict linguistic patterns in sparse data.	K2
CO3	Demonstrate knowledge of word sense disambiguation techniques, including supervised and unsupervised learning methods	K2
CO4	Evaluate and employ lexical acquisition methods, such as verb subcategorization and semantic similarity measures	K5
C05	Utilize computational tools and grammars, such as part-of-speech tagging, probabilistic context-free grammars (PCFGs), and Python NLTK, to develop and implement language processing applications.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										
CO2	3	3			3							
CO3	3	3			3							
CO4	3	3			3							
CO5	3	3			3				3	3	3	3

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Foundations of Statistical Natural Language Processing	C.D.Manning H. Schutze	MIT Press	1/e, 1999				
2	Natural Language Processing with Python and NLTK.	Steven Bird, Ewan Klein, Edward Loper	O'reilly Pub	1/e, 2009				

	Reference Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Speech and Language Processing: Introduction to Natural Language Processing Computational Linguistics and Speech Recognition, PHI	D. Jurafsky, J H Martin	Pearson	1/e,, 2009						
2	Natural Language Understanding	James Allen	Benjamin- Cummings	1/e,, 1988						
3	Natural Language Processing: Python and NLTK	Nithin Hardeniya, Jacob Perkins, Deepthi Chopra, Nisheeth Joshi, Iti Mathur	Packt Publishing	1/e,, 2016						

Video Links (NPTEL, SWAYAM)						
Module No.	Link ID					
1,2,3	https://onlinecourses.nptel.ac.in/noc20_cs87/preview					

Course Code	PEADT633	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCST503	Course Type	Theory

MACHINE LEARNING IN COMPUTATIONAL BIOLOGY

Course Objectives:

- **1.** To familiarize students with a foundational understanding of computational biology, including its scope, significance and key challenges
- 2. To introduce the ethical considerations, limitations, and challenges in applying machine learning to biological data, including issues related to data privacy, biases in algorithms, and the reproducibility of results.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Role of Machine Learning in Computational Biology Introduction - Creation and analysis of sequence data, Challenges of Machine Learning in Computational Biology. Future directions of Machine Learning in Computational Biology.	8
2	Clustering problems Computational Biology Hierarchical Clustering, Partition Clustering, Overview Model-Based Clustering, k-Means clustering, k-Means clustering algorithm, Advantages, Disadvantages, illustrative example of k- Means clustering, Clustering for creating phylogenetic trees, Using Clustering Approach to Identify Patients' Subtypes, Application of clustering algorithms on gene expression data	9

	Supervised techniques for Computational Biology	
	Proteomics Dataset, Data Preprocessing Algorithms, Dimension and Feature	
	Subset Selection, Partial Least Square (PLS), Linear Discriminant Analysis	
3	(LDA), Protein Classification, Support Vector Machine with Feature	10
	Elimination.	
	Data Errors, Mean Square Error Generative versus Discriminative,	
	Approximation Versus Explanation, Single Versus Multiple Methods.	
	Machine-Learning Algorithms for Computational Biology	
	Machine-Learning Algorithms for Feature Selection from Gene Expression	
	Data, Feature Extraction and Pattern recognition from sequence data,	
4	measures of a Feature, Dimensionality reduction - Principal Component	9
	Analysis (PCA), Decision Trees in Bioinformatics. Artificial Neural	
	Network (ANN) in Bioinformatics, Genetic Algorithms (GA) in	
	Bioinformatics.	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

		Bloom's
	Course Outcome	Knowledge
		Level (KL)
CO1	Describe the basic concepts of Machine Leaning, Classification, regression and clustering problems, parameters and measures	K2
CO2	Demonstrate the clustering algorithm on computational biology problems	K3
СО3	Apply Dimensionality reduction techniques and Decision Trees in computational biology	К3
CO4	Illustrate Feature Extraction and Pattern recognition and Classification in the domain of Computational Biology analysis	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Statistical Modelling and Machine Learning Principles for Bioinformatics Techniques, Tools, and Applications	K. G. Srinivasa, G. M. Siddesh, S. R. Manisekhar	Springer	1/e, 2020					
2	Machine Learning Approaches to Bioinformatics.	Zheng Rong Yang	World Scientific	1/e, 2010					

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Deep Learning in Bioinformatics: Techniques and Applications in Practice.	Izadkhah, Habib.	1/e, 2022						
2	Artificial Intelligence in Bioinformatics: From Omics Analysis to Deep Learning and Network Mining.	Agapito, Giuseppe, et al.	Elsevier	1/e, 2022.					
3	Data Analytics in Bioinformatics: A Machine Learning Perspective.	Rabinarayan Satpathy et. al.	Wiley	1/e, 2021					
4	Introduction to Machine Learning and Bioinformatics.	Michailidis, George, et al.	CRC Press	1/e, 2008					
5	Machine Learning in Bioinformatics.	Zhang, Yanqing,, Rajapakse, Jagath C.	Wiley	1/e, 2009					

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://onlinecourses.nptel.ac.in/noc23_bt12/preview						
2	https://onlinecourses.nptel.ac.in/noc22_bt12/preview						

ADVANCED DATABASE SYSTEMS

(Common to CS/CM/CR/AM/AD)

Course Code	PECST634	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To learn the fundamentals of data modeling, query processing, and design in advanced databases and study the working principles of distributed databases.
- 2. To learn emerging databases such as XML and NoSQL.
- **3.** To enable the student to use tools, methodologies, and skills for working successfully with databases in today's global, data driven business model.

Module No.	Syllabus Description					
1	Query Processing and Optimization - Measures of query cost, Algorithms for Selection with cost analysis, Algorithms for Join with cost analysis, Evaluation of expressions; Heuristics in Query Optimization - Optimization of Relational Algebra expressions; Physical Database Design and Tuning - Introduction to Physical Database Design, Overview of Database Tuning, Tuning the Conceptual Schema, Tuning Queries and Views; Impact of Concurrency.	9				
2	Distributed Databases - Distributed Systems, Introduction, Architecture, Distributed Database Concepts, Distributed Data Storage, Distributed Transactions, Commit Protocols, Concurrency Control; Query Processing and Decomposition - Query Processing Objectives, Characterization of Query Processors, Layers of Query Processing, Query Decomposition, Localization of Distributed Data.	9				
3	XML and Non Relational Databases - Introduction to Semi Structured Data and XML Databases, XML Data Model - XSD, XML: DTD and XML	9				

	Schema, XML Presentation, XPath Queries, XQuery; NoSQL Databases - CAP Theorem, Document based; MongoDB Operation - Insert, Update, Delete, Query, Indexing, Application, Replication, Sharding, Deployment; Cassandra - Data Model, Key Space, Table Operations, CRUD Operations.	
4	Graph database - Introduction, Data Modelling with Graphs, Building a Graph Database application, Data Modeling, Predictive Analysis with Graph Theory; Depth and Breadth First Search; Path-Finding with Dijkstra's Algorithm; Graph Theory and Predictive Modeling	9

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions.

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0)
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome			
CO1	Apply various measures for query processing and optimization and apply techniques to tune database performance.	К3		
CO2	Explain the architecture and fundamental concepts of distributed databases.	K2		
CO3	Utilize semi-structured data, XML, and XML queries for effective data management	К3		
CO4	Utilize NoSQL database systems to manage and manipulate data in real- time applications	К3		
CO5	Develop advanced skills in graph database concepts, covering data modeling, application building, and the application of graph theory for predictive analysis and modeling.	К3		

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	BO1	DOJ	PO2 PO3	DO 4	DO5	DOC	D07	DOG	PO9	PO1	PO1	PO1
	PO1	PO2	PUS	PO4	PO5	PUo	PU/	PO8		0	1	2
CO1	3	2	2									3
CO2	3	2	2									3
CO3	3	2	2		2							3
CO4	3	2	2		2							3
CO5	3	3	3		3							3

	Text Books								
Sl. No	Title of the Book	Title of the BookName of the Author/s		Edition and Year					
1	Fundamentals of Database Systems	Ramez Elmasri, Shamkant B. Navathe	Pearson	7/e, 2017					
2	Database System Concepts	A. Silberschatz, H. Korth, S. Sudarshan	McGraw-Hill	7/e, 2021					
3	Database Management Systems	R. Ramakrishnan, J. Gehrke	McGraw Hill	3/e, 2018					
4	Graph Databases	Ian Robinson, Jim Webber & Emil Eifrem	O'Reilly	2/e, 2015					
5	Database Systems	T. M. Connolly, C. Begg	Pearson	6/e, 2019					

	Reference Books				
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Principles of Database Management: Practical Guide to Storing, Managing and Analyzing Big and Small Data	W. Lemahieu, S. vanden Broucke and B. Baesens	Cambridge University Press	1/e, 2018	
2	Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems	M. Kleppmann	O'Reilly	1,e2017	
3	Database Systems: The Complete Book	Hector Garcia-Molina Jeffrey D. Ullman Jennifer Widom	Prentice Hall	2/e, 2009	
4	Next generation databases: NoSQL, newSQL, and big data. Apres.	Guy Harrison	Apress	1/e, 2015	
5	Foundations of Multidimensional and Metric Data Structures	Hanan Samet	Morgan Kaufmann	1/e, 2006	

	Video Links (NPTEL, SWAYAM)		
Module No.	Link ID		
1	CAP Theorem https://nptel.ac.in/courses/106104189		
2	Advanced database Queries https://archive.nptel.ac.in/courses/106/104/106104021		
3	Database design https://archive.nptel.ac.in/courses/106106093/		
4	Introduction to modern application development https://archive.nptel.ac.in/courses/106/106/106106156		

Course Code	PEADT636	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

WEB MINING

Course Objectives:

- 1. To provide essential skills in web mining and social network analysis, covering theoretical foundations, association rule and sequential pattern mining, information retrieval, text preprocessing, advanced search techniques, and web crawling, preparing them to tackle real-world data analysis challenges effectively.
- 2. To impart in-depth knowledge and practical skills in structured data extraction and web usage mining, including wrapper generation, schema matching, and various extraction techniques.

Module No.	Syllabus Description	Contact Hours	
	Introduction - Web Mining - Theoretical background - Association rule		
	mining - Sequential Pattern Mining -Information retrieval and Web search		
1	- Information retrieval Models-Relevance Feedback- Text and Web page	9	
	Pre-processing – Inverted Index – Latent Semantic Indexing –Web Search		
	– Meta-Search – Web Spamming.		
	Introduction -Social Networks Analysis- Co-Citation and Bibliographic		
	Coupling- Page Rank: PageRank Algorithm, Link-Based Similarity Search,		
	Enhanced Techniques for Page Ranking - HITS: HITS Algorithm, Finding		
	Other Eigenvectors-Community Discovery: Problem Definition, Bipartite		
2	Core Communities.	9	
	Web Crawling -A Basic Crawler Algorithm: Breadth-First Crawlers,		
	Preferential Crawlers, Universal Crawlers- Focused Crawlers and Topical		
	Crawlers		
	Structured Data Extraction: Wrapper Generation – Preliminaries- Wrapper		
3	Induction- Instance Based Wrapper Learning - Automatic Wrapper	9	
	Generation: Problems - String Matching and Tree Matching -Multiple		

SYLLABUS

	Alignment - Building DOM Trees - Extraction Based on a Single List Page	
	and Multiple pages- Introduction to Schema Matching - Schema Level	
	Match -Domain and Instance Level Matching – Extracting and Analysing	
	Web Social Networks.	
	Web Usage Mining - Data Collection and Pre-Processing: Sources and	
	Types of Data, Key Elements of Web Usage Data - Data Modelling for	
4	Web Usage Mining - Discovery and Analysis of Web Usage Patterns -	9
	Applications- Recommender Systems and Collaborative Filtering -Query	
	Log Mining	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain data mining process and techniques, specifically those that are relevant to Web mining.	К2
CO2	Identify the use of Social Networks Analysis in Web Mining and basics of Information retrieval	К3
CO3	Use different web crawling algorithms, such as breadth-first, preferential, universal, focused, and topical crawlers, to evaluate their effectiveness in gathering and processing web data	К3
CO4	Applyt advanced solutions for structured data extraction, including innovative methods for wrapper generation, automatic wrappers, and matching techniques for various web pages.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									2
CO3	3	3	3	2								3
CO4	3	3	3	2								3

	Text Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher								
1	Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data (Data- Centric Systems and Applications)	Bing Liu,	Springer	2/e, 2009							

	Refe	rence Books		
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Data Mining the Web: Uncovering Patterns in Web Content, Structure, and Usage	Zdravko Markov, Daniel T. Larose	John Wiley & Sons,	1/e, 2007
2	Web Mining and Social Networking: Techniques and Applications	Guandong Xu, Yanchun Zhang, Lin Li,	Springer	1/e, 2010
3	Mining the Web: Discovering Knowledge from Hypertext Data	Soumen Chakrabarti	Morgan Kaufmann	1/e. 2002
4	Graph-Theoretic Techniques for Web Content Mining	Adam Schenke	World Scientific Publishing	1/e, 2005

FUNDAMENTALS OF CRYPTOGRAPHY

(Common to CS/CM/CR/AM/AD)

Course Code	PECST637	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To develop a foundational understanding of mathematical concepts in cryptography,
- 2. To gain comprehensive knowledge of cryptographic methods.

SYLLABUS	
-----------------	--

Module No.	Syllabus Description	Contact Hours
1	Introduction to Number Theory - Divisibility and The Division Algorithm, The Euclidean Algorithm, Modular Arithmetic : The Modulus, Properties of Congruences, Modular Arithmetic Operations, The Extended Euclidean Algorithm, Primitive Roots, Existence of Primitive Roots for Primes, Fermat's Theorem, Euler's Totient Function, Euler's Theorem, Testing for Primality : Miller–Rabin Algorithm, A Deterministic Primality Algorithm, Discrete Logarithms, Chinese Remainder Theorem.	10
2	Security Attacks; Security Services; Security Mechanisms; Fundamental Security Design Principles; Cryptography - Symmetric Cipher Model, Substitution Techniques, Transposition techniques; Traditional Block Cipher Structure.	8
3	The Data Encryption Standard - DES Encryption & Decryption, Avalanche Effect, Strength of DES; Advanced Encryption Standard - AES Structure; Stream Ciphers; RC4; Principles of Public-Key Cryptosystems - Public- Key Cryptosystems, Applications for Public-Key Cryptosystems, Requirements for Public-Key Cryptography,	10

		The RSA Algorithm, Description of the Algorithm; Diffie-Hellman Key				
		Exchange.				
4		Cryptographic Hash Functions - Applications of Cryptographic Hash				
	1	Functions, Secure Hash Algorithm (SHA), SHA-3; MAC; MD5; Digital				
	+	Signatures.; Key Management and Distribution - Symmetric Key	o			
		Distribution; X.509 certificates; PKI.				

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0)
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Apply number theory concepts in data security	K3
CO2	Explain the cryptographic concepts and apply the classical encryption methods for data confidentiality	К3
СО3	Describe the symmetric and asymmetric ciphers used for information security	К2
CO4	Explain the algorithms used for authentication and integrity	K2

At the end of the course students should be able to:

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2								2
CO2	3	3	3	2								2
CO3	3	3	3									2
CO4	3	3	3									2

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Cryptography & Network Security: Principles and practice	William Stallings	Pearson	7/e, 2017				

	Reference Books							
SI. No	Title of the Book Name of the Autho		Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year		
1	Cryptography & Network Security	Behrouz A. Forouzan	McGraw Hill	3/E, 2007				
2	Security in Computing	Charles P. Pfleeger, Shari L. Pfleeger, Jonathan Margulies	Prentice Hall	5/e, 2015				
3	A Classical Introduction to Cryptography: Applications for Communications Security	S. Vaudenay	Springer	1/e, 2009				
4	Introduction to Cryptography: Principles and Applications	H. Delfs, H. Knebl	Springer- Verlag	1/E, 2002				

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://archive.nptel.ac.in/courses/111/101/111101137/					
2	https://nptel/courses/video/106105031/L17.html					
3	https://onlinecourses.nptel.ac.in/noc22_cs90/preview					

QUANTUM COMPUTING

(Common to CS/CM/CR/AD/AM)

Course Code	PECST638	CIE Marks	40
Teaching Hours/Week (L:T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To give an understanding of quantum computing against classical computing.
- **2.** To understand fundamental principles of quantum computing, quantum algorithms and quantum information.

Module No.	Syllabus Description	Contact Hours
1	Review of Basics Concepts Review of linear algebra, Principles of quantum mechanics, Review of Information theory, Review of Theory of Computation. [Text 1 - Ch 1, 2; Text 2, Ch 11.1, 11.2]	9
2	Introduction to Quantum Information Qubit – Bloch sphere representation, Multiple qubit states, Quantum logic gates – single qubit and multi-qubit, Quantum circuits, Density matrix, Quantum entanglement. [Text 1 - Ch 3, 4; Text 2 - Ch 4]	9
3	Quantum Algorithms: - Simple Quantum Algorithms, Quantum Integral Transforms, Grover's Search Algorithm and Shor's Factorization Algorithm. [Text 1 - Ch 5,6,7,8]	9
4	Quantum Communication: - Von Neumann entropy, Holevo Bound, Data compression, Classical information over noisy quantum channels, Quantum information over noisy	9

	quantum channels, Quantum Key Distribution, Quantum Communication	
	protocols	
	[Text 2 - Ch 11.3, Ch 12.1 - 12.5]	

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0)
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course, students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the concept of quantum computing against classical computing.	K2
CO2	Illustrate various quantum computing algorithms.	K2
CO3	Explain the latest quantum communication & protocols.	K2
CO4	Experiment with new algorithms and protocols for quantum computing.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3									2
CO2	3	2	3									2
CO3	3	2	3									2
CO4	3	2	3									2

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Quantum Computing : From Linear Algebra to Physical Realizations	Mikio Nakahara Tetsuo Ohmi	CRC Press	1/e, 2008					
2	Quantum Computation and Quantum Information	Michael A. Nielsen & Isaac L. Chuang	Cambridge University Press	1/e, 2010					

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Quantum Computing for Programmers	Robert Hundt	Cambridge University Press	1/e, 2022				
2	Quantum Computing for Everyone	Chris Bernhardt	MIT Press	1/e, 2020				
3	An Introduction to Practical Quantum Key Distribution [paper]	Omar Amer Vaibhav Garg Walter O. Krawec	IEEE Aerospace and Electronic Systems Magazine	March 2021				
4	Quantum communication [paper]	Nicolas Gisin & Rob Thew	Nature Photonics	March 2007				

	Video Links (NPTEL, SWAYAM)						
No.	No. Link ID						
1	https://archive.nptel.ac.in/courses/106/106/106106232/						
2	https://archive.nptel.ac.in/noc/courses/noc19/SEM2/noc19-cy31/						

NATURAL LANGUAGE PROCESSING

Course Code	PEADT635	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- **1.** To introduce the comprehensive understanding of Natural Language Processing (NLP)
- 2. To discuss various parsing techniques and ambiguity resolution
- **3.** To discuss the advanced semantic interpretation and knowledge representation

Module No.	Syllabus Description	Contact Hours				
	Introduction to Natural Language Understanding and Linguistics:					
	Levels of language analysis, Syntax, Semantics, Pragmatics. Linguistic					
	Background, An Outline of English Syntax, Lexicon, POS Tagging, Word					
1	Senses.	8				
	Project 1: Comprehensive Analysis of English Language Processing:					
	Syntax, Semantics, and Pragmatics using NLTK and spaCy					
	Parsing Techniques and Ambiguity Resolution: Grammars and Parsing					
	Features, Agreement and Augmented Grammars, Grammars for Natural					
	Language, Parsing methods and Efficient Parsing, Ambiguity Resolution,					
2	Statistical Methods. Probabilistic Context Free Grammar.					
	Project 2: Implementation and Evaluation of Probabilistic Context-Free					
	Grammars (PCFG) for Natural Language Parsing using NLTK					
	Semantic Interpretation and Knowledge Representation in NLP:	10				
3	Semantics and Logical Form, Linking Syntax and Semantics, Ambiguity	10				

	Resolution, other Strategies for Semantic Interpretation, Scoping and the	
	Interpretation of Noun Phrases.	
	 Knowledge Representation and Reasoning, Local Discourse Context and Reference, Using World Knowledge, Discourse Structure, Defining a Conversational Agent. Project 3: Strategies for Semantic Interpretation and Ambiguity Resolution in NLP using NLTK and spaCy Assignment: 	
	Knowledge Representation and Reasoning for NLP Applications	
4	 Language Models: Pre-trained Models-BERT, GPT-2, ELMO, RoBERT Applications and Challenges- Machine Translation, Information Retrieval and Extraction, Sentiment Analysis, Text Categorization and Summarization. Project 4: Strategies for Semantic Interpretation and Ambiguity Resolution in NLP using NLTK and spaCy 	10

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Internal Examination	Evaluate	Analyse	Total
5	15	10	10	40

Criteria for Evaluation(Evaluate and Analyse): 20 marks

- 1. Code Implementation (40%) 8 Marks
 - Correctness (4 Marks): Implementation of the code correctly
 - Efficiency and Robustness (4 Marks): Code optimization for efficiency,
- 2. Results Analysis (60%) 12 Marks
 - valuation Metrics (6 Marks): Proper use of evaluation metrics
 - Insightful Analysis (6 Marks): Interpretation of the results

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Apply syntax, semantics, and pragmatics in NLP tasks	K3			
CO2	Explain accurate lexicon usage, POS tagging, and word sense disambiguation.	K2			
CO3	Implement and utilize various grammars and parsing methods, including resolving ambiguities	K3			
CO4	Link syntax and semantics, interpret noun phrases, and use knowledge representation for discourse management.	K2			
CO5	Implement the models like BERT, GPT-2, ELMO, and RoBERT for tasks like machine translation, sentiment analysis, and text summarization	К3			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											3
CO2	3	3										3
CO3	3	3	3	3	3							3
CO4	3	3	3	3	3							3
CO5	3	3	3	3	3					3	3	3

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Speech and Language Processing	D. Jurafsky and J. H. Martin	Prentice Hall India	1/e, 2000				
2	Natural Language Understanding	James Allen	Benjamin-Cummings	1/e, 1988				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Introduction to Artificial intelligence	Charniak, Eugene	Addison-Wesley	1/e, 1985				
2	Modern Information Retrieval	Ricardo Baeza-Yates and Berthier Ribeiro-Neto	Addison-Wesley	1/e, 1999				
3	Natural Language Processing and Information Retrieval,	U. S. Tiwary and Tanveer Siddiqui	Oxford University Press	1/e, 2008				

Video Links (NPTEL, SWAYAM)					
Module No.	Link ID				
1,2	https://onlinecourses.nptel.ac.in/noc24_cs39/preview				
4	https://link.springer.com/chapter/10.1007/978-3-031-23190-2_2				

SEMESTER 6

DATA MINING AND WAREHOUSING

Course Code	PBADT604	CIE Marks	60
Teaching Hours/Week (L: T:P: R)	4	ESE Marks	40
Credits	3:0:0:1	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PBADT304	Course Type	Theory

Course Objectives:

- 1. To understand the principles of Data warehousing and Data Mining.
- 2. To be familiar with the Data warehouse architecture and its Implementation
- 3. To perform classification, association, and prediction of data

Module No.	Syllabus Description	Contact Hours
1	Introduction to Data Mining: Introduction, What is Data Mining, Definition, KDD, Challenges, Data Mining life cycle, Data Pre-processing concepts Association Rule Mining: - Efficient and Scalable Frequent Item set Mining Methods – Mining Various Kinds of Association Rules – Association Mining to Correlation Analysis – Constraint-Based Association Mining.	10
2	Cluster Analysis: - Types of Data in Cluster Analysis – A Categorization of Major Clustering Methods – Partitioning Methods – Hierarchical methods – Density-Based Methods – Grid-Based Methods – Model-Based Clustering Methods – Clustering High-Dimensional Data – Constraint-Based Cluster Analysis – Outlier Analysis.	11
3	Classification and Prediction: - Issues Regarding Classification and Prediction – Classification by Decision Tree Introduction – Bayesian Classification – Rule Based Classification – Classification by Back propagation – Support Vector Machines – Associative Classification – Lazy Learners – Other Classification Methods – Prediction – Accuracy and Error Measures – Evaluating the Accuracy of a Classifier or Predictor – Ensemble Methods – Model Section.	15

Introduction To Data Warehousing Evolution of Decision Support								
Systems- Data warehousing Components -Building a Data warehouse, Data								
4	Warehouse and DBMS, Data marts, Metadata, Multidimensional data model, 10							
OLAP vs OLTP, OLAP operations, Data cubes, Schemas for								
	Multidimensional Database: Stars, Snowflakes and Fact constellations.							

Suggestion on Project Topics

Students can implement various data related projects, from any domain, using the techniques studied in the syllabus. It may contain sections for data storage, data pre-processing and small levels of data mining to recognize patterns in the data. Socially relevant project domains are highly appreciated. Check the datasets available at <u>https://www.kaggle.com/datasets/</u> and perform data pre-processing operations such as data cleaning, missing value management and mine useful information from the dataset.

A suggestive list of projects are added here. Similar projects could be added by concerned faculty:

- 1. Perform association technique on customer data set/ agriculture data set
- 2. Create the data warehouse for any medical shop having 2 or more branches
- 3. Predict traffic conditions for allocating more buses on various routes by bus controller
- 3. Predict Job opportunities Computer/IT field looking into the work generated last year.

Course Assessment Method (CIE: 60 marks, ESE: 40 marks) Continuous Internal Evaluation Marks (CIE):

Attendance	Project	Internal Ex-1	Internal Ex-2	Total
5	30	12.5	12.5	60

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 2 marks (8x2 =16 marks) 	 2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 subdivisions. Each question carries 6 marks. (4x6 = 24 marks) 	40

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Comprehend the key process of data mining and Analyse the kinds of patterns that can be discovered by association rule mining	К3
CO2	Implement various clustering methods	К3
CO3	Identify interesting patterns from large amounts of data for predictions and classification.	К3
CO4	Understand warehousing architectures for organizing large database	K2
CO5	Use tools for systematically organizing large databases and use their data to make strategic decisions.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3		3							3
CO2	3	3	3		3							3
CO3	3	3	3		3							3
CO4	3	3	3		3							3
CO5	3	3	3		3							3

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Data mining Concepts and Techniques	Jiawei Han, Michelin Kamber, Jian Pei	Elsevier	3/e, 2011				
2	Data Mining: Introductory And Advanced Topics	Margaret H Dunham	Pearson Education	1/e,2006				
3	Data Warehousing, Data Mining & OLAP	Alex Berson and Stephen J. Smith	Mc Graw Hill	1/e, 2008.				
4	Introduction to Data Mining,	Pang-Ning Tan, Michael Steinbach and Vipin Kumar	Pearson Education	1/e, 2007				

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Insight into Data mining Theory and Practice	K.P. Soman, Shyam Diwakar and V. Ajay	Prentice Hall of India	1/e2006.			
2	Data Mining Techniques	Arun K. Pujari	Universities Press	4/e, 2016			
3	Introduction to Data Min Data Mining with Case Studies	G. K. Gupta	Prentice Hall of India	3/e, 2014			

	Video Links (NPTEL, SWAYAM)						
Module No.							
1	https://nptel.ac.in/courses/110107092						
2	https://nptel.ac.in/courses/106105174						

PBL Course Elements

L: Lecture	R: Pr	oject (1 Hr.), 2 Fac	ulty Members		
(3 Hrs.)	Tutorial	Practical	Presentation		
Lecture delivery	Project identification	Simulation/ Laboratory Work/ Workshops	Presentation (Progress and Final Presentations)		
Group discussion	Project Analysis	Data Collection	Evaluation		
Question answer Sessions/ Brainstorming Sessions	swer Analytical thinking essions/ and ainstorming self-learning		Project Milestone Reviews, Feedback, Project reformation (If required)		
Guest Speakers (Industry Experts)	Case Study/ Field Survey Report	Prototyping	Poster Presentation/ Video Presentation: Students present their results in a 2 to 5 minutes video		

Sl. No	Evaluation for	Allotted Marks
1	Project Planning and Proposal	5
2	Contribution in Progress Presentations and Question Answer Sessions	4
3	Involvement in the project work and Team Work	3
4	Execution and Implementation	10
5	Final Presentations	5
6	Project Quality, Innovation and Creativity	3
	Total	30

Assessment and Evaluation for Project Activity

1. Project Planning and Proposal (5 Marks)

- Clarity and feasibility of the project plan
- Research and background understanding
- Defined objectives and methodology

2. Contribution in Progress Presentation and Question Answer Sessions (4 Marks)

- Individual contribution to the presentation
- Effectiveness in answering questions and handling feedback

3. Involvement in the Project Work and Team Work (3 Marks)

- Active participation and individual contribution
- Teamwork and collaboration

4. Execution and Implementation (10 Marks)

- Adherence to the project timeline and milestones
- Application of theoretical knowledge and problem-solving
- Final Result

5. Final Presentation (5 Marks)

- Quality and clarity of the overall presentation
- Individual contribution to the presentation
- Effectiveness in answering questions

6. Project Quality, Innovation, and Creativity (3 Marks)

- Overall quality and technical excellence of the project
- Innovation and originality in the project
- Creativity in solutions and approaches

SEMESTER 6

DATA STRUCTURES

Course Code	OECST611	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	-	Course Type	Theory

Course Objectives:

- 1. To provide the learner a comprehensive understanding of data structures and algorithms.
- 2. To prepare them for advanced studies or professional work in computer science and related fields.

Module No.	Syllabus Description	Contact Hours
1	Basic Concepts of Data Structures Definitions; Data Abstraction; Performance Analysis - Time & Space Complexity, Asymptotic Notations; Polynomial representation using Arrays, Sparse matrix (<i>Tuple representation</i>); Stacks and Queues - Stacks, Multi- Stacks, Queues, Circular Queues;	9
2	Linked List and Memory Management Singly Linked List - Operations on Linked List, Stacks and Queues using Linked List, Polynomial representation using Linked List; Doubly Linked List.	9
3	Trees and Graphs Trees :- Representation Of Trees; Binary Trees - Types and Properties, Binary Tree Representation, Tree Operations, Tree Traversals; Binary Search Trees - Binary Search Tree Operations; Graphs :- Definitions; Representation of Graphs; Depth First Search and Breadth First Search.	9
4	Sorting and Searching Sorting Techniques :- Selection Sort, Insertion Sort, Quick Sort, Merge Sort; Searching Techniques - Linear Search, Binary Search, Hashing - Hashing functions : Division; Collision Resolution : Linear probing, Open hashing.	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome			
CO1	Identify appropriate data structures for solving real world problems.	К3		
CO2	Describe and implement linear data structures such as arrays, linked lists, stacks, and queues.	К3		
CO3	Describe and Implement non linear data structures such as trees and graphs.	К3		
CO4	Select appropriate searching and sorting algorithms to be used in specific circumstances.	К3		

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Fundamentals of Data Structures in C	Ellis Horowitz, Sartaj Sahni and Susan Anderson-Freed,	Universities Press	2/e, 2007				
2	Introduction to Algorithms	Thomas H Cormen, Charles Leisesrson, Ronald L Rivest, Clifford Stein	PHI	3/e, 2009				

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Classic Data Structures	Samanta D.	Prentice Hall India.	2/e, 2018					
2	Data Structures and Algorithms	Aho A. V., J. E. Hopcroft and J. D. Ullman	Pearson Publication.	1/e, 2003					
3	Introduction to Data Structures with Applications	Tremblay J. P. and P. G. Sorenson	Tata McGraw Hill.	2/e, 2017					
4	Theory and Problems of Data Structures	Lipschuts S.	Schaum's Series	2/e, 2014					

	Video Links (NPTEL, SWAYAM)				
Module No.					
1	https://nptel.ac.in/courses/106102064				
2	https://ocw.mit.edu/courses/6-851-advanced-data-structures-spring-2012/				

DATA COMMUNICATION

(Common to CS/CM/CD/CA)

Course Code	OECST612	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To understand the details of data communication at the lower level and the associated issues.
- **2.** To gain insight into the important aspects of data communication and computer networking systems and to apply the in practical applications.

SYLLABUS

Module No.	Syllabus Description				
1	Communication model - Simplex, Half duplex, Full duplex transmission. Periodic analog signals - Sine wave, Amplitude, Phase, Wavelength, Time and frequency domain, Bandwidth. Analog & digital data and signals. Transmission impairments - Attenuation, Delay distortion, Noise. Data rate limits - Noiseless channel, Nyquist bandwidth, Noisy channel, Shannon's capacity formula. Guided transmission media - Twisted pair, Coaxial cable, Optical fiber. Unguided media - Radio waves, Terrestrial microwave, Satellite microwave, Infrared. Wireless propagation - Ground wave propagation, Sky wave propagation, Line-of-Sight (LoS) propagation.	10			
2	propagation, Line-of-Sight (LoS) propagation. Digital data to digital signal – Non-Return-to-Zero (NRZ), Return-to-Zero (RZ), Multilevel binary, Biphase. Analog data to digital signal - Sampling theorem, Pulse Code Modulation (PCM), Delta Modulation (DM). Digital data to analog signal - Amplitude Shift Keying (ASK), Frequency Shift				

3	 Keying (FSK), Phase Shift Keying (PSK). Analog data to analog signal - Amplitude Modulation (AM), Frequency Modulation (FM), Phase Modulation (PM). Multiplexing - Frequency Division Multiplexing (FDM), Wavelength Division Multiplexing (WDM), Time Division Multiplexing (TDM), Characteristics, Synchronous TDM, Statistical TDM. Spread spectrum techniques - Direct Sequence Spread Spectrum (DSSS), Frequency Hopping Spread Spectrum (FHSS), Code Division Multiplexing, Code Division Multiple Access (CDMA). 	8
4	Digital data communication techniques - Asynchronous transmission, Synchronous transmission. Detecting and correcting errors - Types of errors, Parity check, Checksum, Cyclic Redundancy Check (CRC), Forward Error Correction (FEC), Hamming distance, Hamming code. Basic principles of switching - Circuit switching, Packet switching, Message switching.	9

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0)
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
C01	Identify the characteristics of signals for analog and digital transmissions so as to define the associated real world challenges.	К3
CO2	Select transmission media based on characteristics and propagation modes.	К3
CO3	Choose appropriate signal encoding techniques for a given scenario	K3
CO4	Illustrate multiplexing and spread spectrum technologies	K2
CO5	Use error detection, correction and switching techniques in data communication	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3	2								3
CO3	3	3		2								3
CO4	3	3	3	2								3
CO5	3	3	3	2								3

Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Data Communications and Networking	Forouzan B. A	McGraw Hill	6/e, 2019			
2	Data and Computer Communication	William Stallings	Pearson	10/e, 2016			

Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Mobile Communications	Schiller J	Pearson	2/e, 2009				
2	Fundamentals of Networking and Communication	Curt M. White	Cengage	7/e, 2010				

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://nptel.ac.in/courses/106105082					

FOUNDATIONS OF CRYPTOGRAPHY

Course Code	OECST613	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Develop a foundational understanding of mathematical concepts in cryptography,
- 2. Gain comprehensive knowledge of cryptographic methods.
- **3.** Understand the principles and need for computer security.

Module No.	Syllabus Description	Contact Hours
1	Integer Arithmetic – Divisibility, Greatest Common Divisor Euclid's and Extended Euclid's Algorithm for GCD; Modular Arithmetic – Operations, Properties, Polynomial Arithmetic; Algebraic Structures – Group Ring Field.	9
2	Prime numbers and Prime Factorisation - Primitive Roots, Existence of Primitive Roots for Primes, Fermat's Theorem, Primality Testing, Euler's Theorem, Euler's Totient Function, Discrete Logarithms, Modular Arithmetic, Chinese Remainder Theorem.	9
3	Principles of security - Types of Security attacks, Security services, Security Mechanisms; Cryptography - Introduction, cryptographic notations, substitution techniques, Transposition Techniques, limitations of classical cryptography.	9
4	Symmetric key Ciphers - Block Cipher principles & Algorithms- DES, AES, Differential and Linear Cryptanalysis; Asymmetric Key Ciphers- RSA, ECC; Hash Functions - MD5, SHA-1.	9

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject			Total	
5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome					
CO1	Explain the integer arithmetic operations including divisibility and GCD algorithms, modular arithmetic operations and properties, polynomial arithmetic, and algebraic structures such as groups, rings, and fields.	K2				
CO2	Describe the number theory concepts essential for cryptographic applications and mathematical problem-solving.	К2				
CO3	Explain the security principles, types of attacks, and protective measures, alongside a thorough understanding of cryptographic techniques and their applications in securing data.	K2				
CO4	Discuss symmetric and asymmetric key cryptography, including block cipher principles, algorithms, public key cryptosystems, and hash functions	K2				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	2	2										2
CO2	2	2										2
CO3	2	2										2
CO4	2	2										2

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Cryptography & Network Security	Behrouz A. Forouzan	McGraw Hill	3/e, 2007						
2	Security in Computing	Charles P. Pfleeger, Shari L. Pfleeger, Jonathan Margulies	Prentice Hall	5/e, 2015						
3	Introduction to Cryptography: Principles and Applications	H. Delfs, H. Knebl	Springer	1/e, 2002						
4	A Classical Introduction to Cryptography: Applications for Communications Security	Serge Vaudenay	Springer	1/e, 2009						

	Reference Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	Cryptography and Network Security	William Stallings	Pearson Education	7/e,2017							

	Video Links (NPTEL, SWAYAM)								
Module No.	Link ID								
1	https://archive.nptel.ac.in/courses/111/101/111101137/								
2	https://nptel/courses/video/106105031/L17.html								
3	https://onlinecourses.nptel.ac.in/noc22_cs90/preview								

MACHINE LEARNING FOR ENGINEERS

(Common to CS/CA/CD/CM/CR/AD/AM/AI)

Course Code	OECST614	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To provide the basic concepts and algorithms in machine learning.
- 2. To discuss the standard and most popular supervised and unsupervised learning algorithms.

Module No.	Syllabus Description	Contact Hours
1	 Introduction to ML Machine Learning vs. Traditional Programming, Machine learning paradigms - supervised, semi-supervised, unsupervised, reinforcement learning. Basics of parameter estimation - maximum likelihood estimation (MLE) and maximum aposteriori estimation (MAP), Bayesian formulation. Supervised Learning Feature Representation and Problem Formulation, Role of loss functions and optimization Regression - Linear regression with one variable, Linear regression with multiple variables - solution using gradient descent algorithm and matrix method. 	10
2	Classification - Naïve Bayes, KNN Generalisation and Overfitting - Idea of overfitting, LASSO and RIDGE	8

	regularization, Idea of Training, Testing, Validation]
	Evaluation, Idea of Haming, Festing, ValuationEvaluation measures – Classification - Precision, Recall, Accuracy, F-Measure, Receiver Operating Characteristic Curve (ROC), Area UnderCurve (AUC).Regression - Mean Absolute Error (MAE), Root Mean Squared Error(RMSE), R Squared/Coefficient of Determination.	
3	 Neural Networks (NN) - Perceptron, Neural Network - Multilayer feed- forward network, Activation functions (Sigmoid, ReLU, Tanh), Back propagation algorithm. Decision Trees – Information Gain, Gain Ratio, ID3 algorithm 	8
4	 Unsupervised Learning Clustering - Similarity measures, Hierarchical Clustering - Agglomerative Clustering, partitional clustering, K-means clustering Dimensionality reduction - Principal Component Analysis, Multidimensional scaling Ensemble methods - bagging, boosting Resampling methods - Bootstrapping, Cross Validation. Practical aspects - Bias-Variance trade-off 	10

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0)
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Illustrate Machine Learning concepts and basic parameter estimation methods	K2
CO2	Demonstrate supervised learning concepts (regression, classification)	K3
CO3	Illustrate the concepts of Multilayer neural network and Decision trees	K3
CO4	Describe unsupervised learning concepts and dimensionality reduction techniques	К3
CO5	Use appropriate performance measures to evaluate machine learning models	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3								2
CO2	3	3	3	3	2							2
CO3	3	3	3	3	2							2
CO4	3	3	3	3	2							2
CO5	3	3	3	3	2							2

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Introduction to Machine Learning	Ethem Alpaydin	MIT Press	2/e, 2010		
2	Data Mining and Analysis: Fundamental Concepts and Algorithms	Mohammed J. Zaki, Wagner Meira	Cambridge University Press	1/e, 2016		

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Machine Learning	Tom Mitchell	McGraw-Hill	1997			
2	Applied Machine Learning	M Gopal	Pearson	2/e, 2018			
3	Neural Networks for Pattern Recognition	Christopher Bishop	Oxford University Press	1995			
4	Machine Learning: A Probabilistic Perspective	Kevin P Murphy	MIT Press	1/e, 2012			
5	The Elements Of Statistical Learning	Trevor Hastie, Robert Tibshirani, Jerome Friedman	Springer	2/e, 2007			

Video Links (NPTEL, SWAYAM)				
Module	Link ID			
No.				
1	https://youtu.be/fC7V8QsPBec?si=8kqBn7x1RG5V1J			
2	https://youtu.be/g_LURKuIj4?si=Xj10NPfMfpQSOhVx			
3	https://youtu.be/yG1nETGyW2E?si=ySlxpeWuFAUQBf7-			
4	https://youtu.be/zop2zuwF_bc?si=W7TpSHLdi4rykva4			

OBJECT ORIENTED PROGRAMMING

(Common to CS/CA/CD/CM/AM/AD)

Course Code	OECST615	CIE Marks	40
Teaching Hours/Week (L:T:P:R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To teach the core object-oriented principles such as abstraction, encapsulation, inheritance, and polymorphism, robust error-handling using exception mechanisms to ensure program reliability.
- 2. To equip the learner to develop object oriented programs encompassing fundamental structures, environments, and the effective utilization of data types, arrays, strings, operators, and control statements for program flow in Java.
- **3.** To enable the learner to design and develop event-driven graphical user interface (GUI) database applications using Swing and database connection components.

Module No.	Syllabus Description	
1	Introduction to Java - Java programming Environment and Runtime Environment (Command Line & IDE); Java compiler; Java Virtual Machine; Primitive Data types and Wrapper Types; Casting and Autoboxing; Arrays; Strings; Vector class; Operators - Arithmetic, Bitwise, Relational, Boolean Logical, Assignment, Conditional (Ternary); Operator Precedence; Control Statements - Selection Statements, Iteration Statements and Jump Statements; Functions; Command Line Arguments; Variable Length Arguments; Classes; Abstract Classes; Interfaces; OOP Concepts - Data abstraction, encapsulation, inheritance, polymorphism, Procedural and object oriented programming paradigm; Microservices; Object Oriented Programming in Java - Declaring Objects; Object Reference; Introduction to Methods; Constructors; Access Modifiers; <i>this</i> keyword.	10

2	Polymorphism - Method Overloading, Using Objects as Parameters, Returning Objects, Recursion; Static Members, Final Variables, Inner Classes. Inheritance - Super Class, Sub Class, Types of Inheritance, The <i>super</i> keyword, protected Members, Calling Order of Constructors; Method Overriding, Dynamic Method Dispatch, Using <i>final</i> with Inheritance.	8
3	Packages and Interfaces – Packages - Defining a Package, CLASSPATH, Access Protection, Importing Packages; Interfaces - Interfaces v/s Abstract classes, defining an interface, implementing interfaces, accessing implementations through interface references, extending interface(s); Exception Handling - Checked Exceptions, Unchecked Exceptions, <i>try</i> Block and <i>catch</i> Clause, Multiple catch Clauses, Nested <i>try</i> Statements, <i>throw</i> , <i>throws</i> and <i>finally</i> , Java Built-in Exceptions, Custom Exceptions.	9
4	Swings fundamentals – Overview of AWT, Swing v/s AWT, Swing Key Features, Swing Controls, Components and Containers, Swing Packages, Event Handling in Swings, Swing Layout Managers, Exploring Swings– JFrame, JLabel, The Swing Buttons, JTextField; Event handling – Event Handling Mechanisms, Delegation Event Model, Event Classes, Sources of Events, Event Listener Interfaces, Using the Delegation Event Model; Developing Database Applications using JDBC – JDBC overview, Types, Steps, Common JDBC Components, Connection Establishment.	9

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. 	60
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Explain the process of developing Java programs, including their structure and components, to demonstrate proficiency.	K2			
CO2	Utilize object-oriented programming principles in the design and implementation of Java applications.	К3			
СО3	Develop and manage Java packages and interfaces, enhancing code modularity and reusability.	К3			
CO4	Implement error handling using Java's exception mechanisms and leverage interfaces for modular applications.	К3			
CO5	Develop event-driven Java GUI applications with database connectivity.	К3			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										3
CO2	3	3	3									3
CO3	3	3	3		3							3
CO4	3	3	3		3							3
CO5	3	3	3		3							3

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Java: The Complete Reference	Herbert Schildt	Tata McGraw Hill	13/e, 2024				
2	Introduction to Java Programming, Comprehensive Version	Y Daniel Liang	Pearson	10/e, 2014				
3	Head First Design Patterns	Eric Freeman, Elisabeth Robson, Bert Bates, Kathy Sierra	O'Reilly Media	1/e, 2004				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Head First Java: A Brain Friendly Guide	Kathy Sierra & Bert Bates	O'Reilly	3/e, 2022				
2	JAVA [™] for Programmers	Paul Deitel	PHI	11/e, 2018				
3	Clean Code : A Handbook of Agile Software Craftsmanship	Robert C. Martin	Prentice Hall	1/e, 2008				
4	Programming with Java	E Balagurusamy	McGraw Hill	6/e, 2019				
5	Java For Dummies	Barry A. Burd	Wiley	8/e, 2022				
6	Effective Java	Joshua Bloch	Pearson	3/e, 2018				

Video Links (NPTEL, SWAYAM)							
Module No.	Link ID						
1	https://nptel.ac.in/courses/106105191 (Lecture no: 9, 10, 1, 2, 3, 4)						
2	https://nptel.ac.in/courses/106105191 (Lecture no: 1, 7, 8, 11, 12, 13, 14, 15, 16)						
3	https://nptel.ac.in/courses/106105191 (Lecture no: 17, 18, 19, 20, 21, 22, 23, 24, 25, 26)						
4	https://nptel.ac.in/courses/106105191						
7	(Lecture no: 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 55)						

DEEP LEARNING LAB

Course Code	PCADL607	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCST503, PCADT601	Course Type	Lab

Course Objectives:

- 1. To get hands-on experience in machine learning.
- 2. To develop deep learning models for computer vision and natural languages using python.

Expt. No.	Experiments
1	Implement and demonstrate Single, Multi variable and Polynomial Regression for a given set
	of training data stored in a .CSV file and evaluate the accuracy.
2	Implement a Python program to perform logistic regression on a dataset.
3	Write a Python program to implement Naive Bayes classifier and calculate the accuracy,
5	precision, and recall for your data set.
	Write a Python program to demonstrate the working of the decision tree based ID3 algorithm.
4	Use an appropriate data set for building the decision tree and apply this knowledge to classify
	a new sample.
5	Assuming a set of data that need to be classified, use a Support Vector Machine classifier to
5	perform this task and evaluate the accuracy.
6	Implement any Clustering algorithm on a given dataset to categorize the data.
7	Build an Artificial Neural Network using Backpropagation algorithm on a given dataset and
	test the same with appropriate dataset.
	Implement Feed forward neural network with three hidden layers for classification on
8	CIFAR-10 dataset. Analyse the impact of optimization and weight initialization techniques
o	such as Xavier initialization, Kaiming Initialization, dropout and regularization techniques,
	and visualize the change in performance.
9	Digit classification using CNN architecture for MNIST dataset. Identify the performance
	change through pre-trained networks such as VGGNet or GoogleNet.
10	Implement a simple RNN for review classification using IMDB dataset. Analyze and

	visualize the performance change while using LSTM and GRU instead of simple RNN.
11	Implement time series forecasting prediction for NIFTY-50 dataset.
12	Implement a shallow auto encoder and decoder network for machine translation (by using any
12	dataset in Kaggle such as English to Hindi neural translation dataset).

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Develop machine learning models in python for regression, classification and clustering tasks using algorithms such as naïve bayes, decision tree, ANN and SVM.	К3
CO2	Implement a deep learning model for computer vision tasks and increase the performance of the model through hyper parameter tuning.	K4
CO3	Develop a recurrent neural network for sequence modelling such as text or time series data and analyse the performance change through LSTM and GRU.	K4
CO4	Develop an algorithm for machine translation using python.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	2	2		1				2
CO2	1	1	1	1	2	2		1				2
CO3	1	1	2	2	2	2		1				2
CO4	1	1	2	2	2	2		1				2

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	Text Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	Hands–On Machine Learning with Scikit–Learn and TensorFlow	Aurelien Geron	O'Relily	3/e, 2022							
2	Deep Learning with Python	François Chollet	Manning	2/e,2021							

Reference Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Introduction to Machine Learning	Ethem Alpaydin	MIT Press	2/e,2010						
2	Deep Learning	Goodfellow, I., Bengio,Y., and Courville, A.	MIT Press	1/e,2016						

	Video Links (NPTEL, SWAYAM)								
Module No.	Link ID								
1	https:dl2.ai								
2	https://onlinecourses.nptel.ac.in/noc20_cs95/preview								
3	https://nptel.ac.in/courses/108105103								

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

- 1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)
 - Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.

- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

SEMESTER 7 ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

FORMAL METHODS IN SOFTWARE ENGINEERING (Common to CS/CR/CM/CA/AD/AM)

Course Code	PECST741	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	2:1:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- **1.** To enable the learners to apply formal methods for modelling, validation, and verification of software systems.
- **2.** To familiarize with a series of advanced tools that address challenges faced in design, coding, and verification.
- **3.** To provide an introduction to the theoretical aspects of these tools, as well as hands-on exploration.

SYLLABUS

Module No.	Syllabus Description						
1	Introduction :- Stages in software development; software defects –causes of software defects; techniques for dealing with software defects-Testing and verification, formal methods and tools.	9					
2	Ensuring reliability in the design phase :- Conceptual modelling, the tool Alloy, conceptual modelling in Alloy, Analysing Alloy models, Fixing bugs in modelling, How Alloy works? Show that the Konigsberg Bridge Problem has no solution.	9					
3	Verification by Model Checking :- Verifier for Concurrent C (VCC): a Hoare-Triple- based tool for Verifying Concurrent C, intra procedure verification of programs, ghost statements.	9					
4	Program Verification:- Inter-procedure verification of programs in VCC, function contracts, pure functions, loop invariants, proving total correctness of programs in VCC.	9					

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/Micro project	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B			
• 2 Questions from each	• Each question carries 9 marks.			
module.	• Two questions will be given from each module, out			
• Total of 8 Questions, each	of which 1 question should be answered.	(0)		
carrying 3 marks	• Each question can have a maximum of 3	60		
	subdivisions.			
(8x3 =24 marks)	(4x9 = 36 marks)			

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the need and use of formal methods and tools in software engineering.	K2
CO2	Demonstrate conceptual modelling of systems using Alloy.	K3
CO3	Illustrate the process of proving correctness of code using Hoare-Triple based weakest precondition analysis	К3
CO4	Demonstrate program verification using VCC.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	-
CO2	2	3	2	3	2	-	-	-	-	-	-	-
CO3	3	3	3	2	-	-	-	-	-	-	-	-
CO4	3	3	3	3	3	-	-	-	-	-	-	-

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Software Abstractions	Daniel Jackson	MIT Press	2011		

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Verifying C Programs: A VCC Tutorial, Working draft, version 0.2	E. Cohen, M. A., Hillebrand, S. Tobies, M. Moskal, W. Schulte		2015				
2	The VCC Manual, Working draft, version 0.2			2016.				

	Links				
No.	Link ID				
1	Tutorial for Alloy Analyzer 4.0 https://alloytools.org/tutorials/online/				

WEB PROGRAMMING

(Common to CS/CA/CM/CD/CR/AD/AM)

Course Code	PECST742	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None/	Course Type	Theory

Course Objectives:

- 1. To equip students with the knowledge and skills required to create, style, and script web pages using HTML5, CSS, JavaScript, and related technologies.
- 2. To provide hands-on experience with modern web development tools and frameworks such as React, Node.js, JQuery, and databases, enabling students to design and build dynamic, responsive, and interactive web applications.

SYLLABUS

Module No.	Syllabus Description				
	Creating Web Page using HTML5 - Introduction, First HTML5 example,				
	Headings, Linking, Images, Special Characters and Horizontal Rules, Lists,				
	Tables, Forms, Internal Linking, meta Elements, HTML5 Form input Types,				
	Input and datalist Elements and autocomplete Attribute, Page-Structure				
	Elements; Styling Web Page using CSS - Introduction, Inline Styles,				
1	Embedded Style Sheets, Linking External Style Sheets, Positioning	9			
	Elements:, Absolute Positioning, z-index, Positioning Elements: Relative				
	Positioning, span, Backgrounds, Element Dimensions, Box Model and Text				
	Flow, Media Types and Media Queries, Drop-Down Menus; Extensible				
	Markup Language - Introduction, XML Basics, Structuring Data, XML				
	Namespaces, Document Type Definitions (DTDs), XML Vocabularies				
	Scripting language - Client-Side Scripting, Data Types, Conditionals,				
	Loops, Arrays, Objects, Function Declarations vs. Function Expressions,				
	Nested Functions, The Document Object Model (DOM) - Nodes and				
2	NodeLists, Document Object, Selection Methods, Element Node Object,	9			
	Event Types				
	Asynchronous JavaScript and XML - AJAX : Making Asynchronous				

	Requests, Complete Control over AJAX, Cross-Origin Resource Sharing	
	JavaScript library - jQuery - jQuery Foundations - Including jQuery,	
	jQuery Selectors, Common Element Manipulations in jQuery, Event	
	Handling in jQuery	
	JavaScript runtime environment : Node.js - The Architecture of Node.js,	
	Working with Node.js, Adding Express to Node.js; Server-side	
	programming language : PHP - What Is Server-Side Development? Quick	
	tour of PHP, Program Control, Functions, Arrays, Classes and Objects in	
3	PHP , Object-Oriented Design ; Rendering HTML : React - ReactJS	9
	Foundations : The Philosophy of React, What is a component? Built- in	
	components, User- defined components - Types of components, Function	
	Components, Differences between Function and Class Components	
	SPA – Basics, Angular JS; Working with databases - Databases and Web	
	Development, SQL, Database APIs, Accessing MySQL in PHP; Web	
	Application Design - Real World Web Software Design, Principle of	
4	Layering, Software Design Patterns in the Web Context, Testing; Web	9
	services - Overview of Web Services - SOAP Services, REST Services, An	
	Example Web Service, Web server - hosting options	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	00
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Develop structured web pages with HTML5 and style them using CSS techniques, including positioning, media queries, and the box model.	K3
CO2	Write client-side scripts using JavaScript and utilize jQuery for DOM manipulation, event handling, and AJAX requests to create responsive and interactive user interfaces.	К3
СОЗ	Build and deploy server-side applications using Node.js, Express, and PHP, and integrate databases using SQL to store and retrieve data for dynamic content generation.	К3
CO4	Utilize React for building component-based single-page applications (SPAs), understanding the fundamental principles of component architecture, and leveraging AngularJS for web application development.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	-	3	-	-	-	-	-	-	3
CO2	3	3	3	-	3	-	-	-	-	-	-	3
CO3	3	3	3	-	3	-	-	-	-	-	-	3
CO4	3	3	3	-	3	-	-	-	-	-	-	3

		Text Books		
SI. No	Title of the Book	Name of the Publisher	Edition and Year	
1	Fundamentals of Web Development	Randy Connolly, Ricardo Hoar	Pearson	1/e, 2017
2	Building User Interfaces with ReactJS - An Approachable Guide	Chris Minnick	Wiley	1/e, 2022
3	Internet & World Wide Web - How to Program	Paul J. Deitel, Harvey M. Deitel, Abbey Deitel	Pearson	1/e, 2011
4	SPA Design and Architecture: Understanding Single Page Web Applications	Emmit Scott	Manning Publications	1/e, 2015

	Reference Books							
Sl. No	Title of the Book	f the Book Name of the Author/s		Edition and Year				
1	A Hand Book On Web Development : From Basics of HTML to JavaScript and PHP	Pritma Jashnani	Notion press	1/e, 2022				
2	Advanced Web Development with React	Mohan Mehul	BPB	1/e, 2020				
3	JavaScript Frameworks for Modern Web Development	Tim Ambler, Sufyan bin Uzayr, Nicholas Cloud	Apress	1/e, 2019				

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://archive.nptel.ac.in/courses/106/106/106106222/						
2	https://archive.nptel.ac.in/courses/106/106/106106156/						

RECOMMENDATION SYSTEMS

Course Code	PECDT741	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Nil	Course Type	Theory

Course Objectives:

- 1. To facilitate the learner to get an overview of recommender systems.
- 2. To introduce learners to the concepts of Collaborative Filtering, Content-based recommendation, Knowledge based recommendation, Hybrid approaches and Evaluating Recommender System.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Introduction to basic concepts and Recent developments: Collaborative recommendation - User-based nearest neighbour recommendations, Item-based nearest neighbour recommendation, Collaborative recommendation ratings , Model-based and pre-processing- based approaches, Recent practical approaches and systems Content-based recommendation - Content representation and content similarity Similarity-based retrieval and Other text classification methods	8
2	Knowledge-based recommendation : Knowledge representation and reasoning, Constraints, Cases and similarities, Interacting with constraint-based recommenders - Defaults Dealing with unsatisfiable requirements and empty result set, Proposing repairs for unsatisfiable requirements, Ranking the items/utility-based recommendation, Interacting with case-based recommenders, Critiquing -Compound critiquing, Dynamic critiquing	9
3	Hybrid recommendation approaches : Opportunities for hybridization Recommendation paradigms, Hybridization designs, Monolithic	8

	hybridization design - Feature combination hybrids, Feature augmentationhybrids, Parallelized hybridization design -Mixed hybrids, Switchinghybrids, Weighted hybrids, Pipelined hybridization design Cascadehybrids, Meta-level hybrids. Limitations of hybridization strategiesEvaluating Recommender Systems : Introduction - Evaluation Paradigms ,	
4	User Studies, Online Evaluation Offline Evaluation with Historical Data Sets, General Goals of Evaluation Design - Accuracy, Coverage, Confidence and Trust, Novelty, General Goals of Evaluation Design - Serendipity, Diversity, Robustness and Stability Scalability, Design Issues in Offline Recommender Evaluation - Case Study of the Netflix Prize Data Set, Segmenting the Ratings for Training and Testing- Hold-Out, Cross- Validation, Comparison with Classification, Accuracy Metrics in Offline Evaluation - Measuring the Accuracy of Ratings Prediction, RMSE versus MAE, Impact of the Long Tail, Evaluating Ranking via Correlation, Evaluating Ranking via Utility Evaluating Ranking via Receiver Operating Characteristic, Limitations of Evaluation Measures - Avoiding Evaluation Gaming	10

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Micro project	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
10	15	10	10	50

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each module.	• Each question carries 14 marks.	
• Total of 10 Questions, each carrying 3 marks	• Two questions will be given from each module, out of which 1 question should be answered.	100
	• Each question can have a maximum of 2 subdivisions.	
(10x3 =30 marks)	(5x14 = 70 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Describe the basic concepts of recommender systems	K2			
CO2	Summarize the features of constraint based and case-based knowledge- based recommender systems	K2			
CO3	Illustrate the use of hybridizing algorithms	K2			
CO4	Examine the design issues in offline recommender evaluation	K3			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Recommender Systems: An Introduction	Jannach D., Zanker M. and FelFering A	Cambridge University Press	1/e, 2011					
2	Recommender Systems: The Textbook	C.C. Aggarwal	Springer	1/e, 2016					

Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Recommender systems handbook	F. Ricci, L Rokach, B. Shapira and P.B. Kantor	Springer	1/e, 2010		
2	Recommender Systems For Learning	Manouselis N., Drachsler H., Verbert K., Duval E	Springer	1/e, 2013		

SEMESTER 7

FINANCIAL DATA SCIENCE

(Common CD/AD/CR)

Course Code	PECDT742	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To give the students an understanding of how data science techniques can be applied to solve complex financial problems, such as risk modeling, fraud detection, and algorithmic trading.
- 2. To enable the students to implement machine learning algorithms for financial applications, including portfolio optimization, and trading strategies.

Module No.	Syllabus Description						
1	Overview of Financial Systems - Financial markets, instruments, and data; Data Science in Finance - Role of data science, types of data in finance (structured, unstructured, time-series, etc.); Financial Data Acquisition - Sources of financial data, Data retrieval from the Internet; Data Preprocessing - Data cleaning, handling missing data, outlier detection, normalization, and scaling; Exploratory Data Analysis - Visualizing financial data (candlestick charts, histograms), statistical summaries.	9					
2	Supervised Learning in Finance - Decision trees, random forests, and support vector machines (SVM) for stock prediction; Unsupervised Learning for Financial Clustering - K-means clustering and principal component analysis (PCA) for risk classification; Neural Networks in Finance - Overview of deep learning techniques, simple models for predicting financial outcomes; Model Evaluation and Performance Metrics: Evaluation metrics like RMSE, R ² , confusion matrix, accuracy, precision, and recall.	9					

3	Financial Risk Types - Credit risk, market risk, liquidity risk; Risk Modeling Techniques - Value at Risk (VaR), Monte Carlo simulations; Stress Testing and Scenario Analysis - Techniques for testing portfolio resilience under extreme conditions; Fraud Detection Algorithms - Anomaly detection techniques in transaction data (e.g., autoencoders, isolation forests); Case Study: Implementing a credit risk scoring model.	9
4	Introduction to Algorithmic Trading - Basics of trading strategies, high- frequency trading, algo-bots; Financial Portfolio Theory - Modern Portfolio Theory (MPT), Efficient Frontier; Optimization Algorithms - Gradient Descent, Genetic Algorithms for portfolio optimization; Backtesting Trading Strategies - Python libraries for backtesting (e.g., Backtrader, QuantConnect).	9

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. 	60
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain how data science methods are applied in financial markets, trading, risk management, and fraud detection.	К3
CO2	Apply various machine learning algorithms (such as decision trees, SVM, and neural networks) to solve financial problems.	К3
CO3	Develop and backtest trading algorithms and optimizing financial portfolios.	К3
CO4	Apply risk modeling techniques and implement fraud detection systems in financial contexts.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3

	Reference Books					
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Data Science for Economics and Finance	Sergio Consoli, Diego Reforgiato Recupero, Michaela Saisana	Springer	1/e, 2021		
2	Hands-On Machine Learning for Algorithmic Trading	Stefan Jansen	Packt	1/e, 2018		
3	Analyzing Financial Data and Implementing Financial Models Using R	Clifford S. Ang	Springer	2/e, 2021		
4	Adventures in Financial Data Science	Graham L Giller	World Scientific	2/e, 2022		
5	Hands-On Data Analysis in R for Finance	Jean-François Collard	CRC Press	1/e, 2023		
6	Financial Data Analytics: Theory and Application	Sinem D. Koseoglu	Springer	1/e, 2021		

CLOUD COMPUTING

(Common to AD/CR)

Course Code	PEADT746	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To understand the core principles, architecture, and technologies that underpin cloud computing, including virtualization, data storage, and cloud services.
- **2.** To equip students with the skills to use cloud computing tools effectively, implement cloud-based applications, and address security challenges within cloud environments.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Introduction - Cloud Computing, Types of Cloud, Working of Cloud Computing, Cloud Computing Architecture - Cloud Computing Technology, Cloud Architecture, Cloud Modelling and Design.	
2	Virtualization - Foundations, Grid, Cloud And Virtualization, Virtualization And Cloud Computing; Data Storage And Cloud Computing - Data Storage, Cloud Storage, Cloud Storage from LANs to WANs.	
3	Cloud Computing Services - Cloud Computing Elements, Understanding Services and Applications by Type, Cloud Services; Cloud Computing and Security - Risks in Cloud Computing, Data Security in Cloud, Cloud Security Services.	10
4	Cloud Computing Tools - Tools and Technologies for Cloud, Apache Hadoop, Cloud Tools; Cloud Applications - Moving Applications to the Cloud, Microsoft Cloud Services, Google Cloud Applications, Amazon Cloud Services.	9

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Articulate the fundamental concepts of cloud computing, its types, and how cloud computing architecture operates.	К2
CO2	Understand and describe the foundations of virtualization, its relationship with cloud computing.	К2
СОЗ	Describe various cloud computing services, understand the different service models, and identify potential risks.	К3
CO4	Demonstrate proficiency in using cloud computing tools such as Apache Hadoop, and deploy applications using popular cloud platforms.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2									2
CO2	2	2	2	2								2
CO3	2	2	2	2								2
CO4	2	2	2	2								2

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
	Cloud Computing: A Practical Approach for Learning and Implementation	A. Srinivasan, J. Suresh	Pearson	1/e, 2014					

	Reference Books										
Sl. No	Title of the Book	Title of the Book Name of the Author/s									
1	Cloud Computing : Concepts, Technology, Security, and Architecture		Pearson	2/e, 2023							
2	Cloud Computing	Sandeep Bhowmik	Cambridge University Press	1/e, 2017							
3	Cloud Computing: A Hands-On Approach	Arshdeep Bahga and Vijay Madisetti	Universities Press	1/e, 2014							

Video Links (NPTEL, SWAYAM)							
Module No.	Link ID						
1	https://onlinecourses.nptel.ac.in/noc21_cs14/preview						

Course Code	PECST747	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PBCST604	Course Type	Theory

BLOCKCHAIN AND CRYPTOCURRENCIES

Course Objectives:

- **1.** To provide a comprehensive understanding of blockchain architecture, elements, types (public, private, consortium), and industry applications.
- **2.** To help the learners to assess strengths and weaknesses of various blockchain consensus mechanisms (e.g., Proof of Work, Proof of Stake, Practical Byzantine Fault Tolerance).
- **3.** To enable learners to use blockchain real-world applications in government, healthcare, finance, and supply chain management, identifying implementation opportunities and challenges.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Blockchain Fundamentals Introduction, Blockchain Definition, Deciphering the Blockchain, Features and challenges of Blockchain, Applications in Blockchain, Decentralisation, Distributed Ledger Technology, Blockchain variants.	7
2	Cryptography in Blockchain and Consensus Mechanisms Concept of Hashing, Creating a Transaction Hash, Merkle Trees - Importance of Merkle tree, Chaining of Blocks, Building the Network, Accessing the network, Types of Wallets. Need for Consensus, Two Generals' Problem, Byzantine Generals' Problem, Byzantine Fault Tolerance (BFT), Practical Byzantine Fault Tolerance (PBFT)- working, Paxos and Raft Algorithms.	9
3	Cryptocurrencies - Bitcoin and Ethereum Bitcoin: Components, Nodes in Bitcoin network, Transactions and memory	10

	 pools, Proof of Work-Mining Cryptocurrencies, Hard and Soft Forks, Tracking Bitcoins-Unspent Transaction Outputs. Ethereum: Transition from Bitcoin to Ethereum, Concept of Ethereum World Computer, Ethereum Virtual Machine, Ethereum Network, Transition from PoW to PoS- Working of PoS, Smart Contracts in Ethereum, Decentralised Applications in Ethereum, Tools used in Ethereum. 	
4	 Blockchain Ethereum Platform using Solidity and Use Cases in Blockchain :- Solidity Language - Remix IDE, Structure of a Smart Contract Program, Modifiers, Events, Functions, Inheritance, External Libraries, Error Handling. Permissioned Blockchains, Introduction to Hyperledger Foundation, Hyperledger Distributed Ledger frameworks, Hyperledger Fabric. Use Cases in Blockchain - Finance, Education, Government, Healthcare and Supply Chain Management. 	10

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total	
5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	00
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the fundamental concepts of Blockchain technology.	K2
CO2	Illustrate the cryptographic building blocks of Blockchain technology and understand the consensus mechanisms.	K2
CO3	Explain the concepts of cryptocurrency bitcoin, mining processes, and wallet management.	K2
CO4	Use the concepts of Ethereum platform and understand the use cases of blockchain technology	К3
CO5	Develop skills in designing and deploying simple applications using Solidity language.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									2
CO2	3	3	3									2
CO3	3	3	3									2
CO4	3	3	3		3							2
CO5	3	3	3	3	3							2

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Blockchain Technology: Algorithms and Applications	Asharaf S, Sivadas Neelima, Adarsh S, Franklin John	Wiley	1/e, 2023					
2	Blockchain Technology	Chandramauoli Subrahmaniyan, Asha A George	Universities Press.	1/e ,2020					

	Reference Books								
Sl. No	Title of the Book	Name of the Publisher	Edition and Year						
1	Blockchain Technology - Concepts and Applications.	Kumar Saurabh, Ashutosh Saxena	Wiley	1/e, 2020					
2	Mastering Blockchain	Imran Bashir	Packt Publishing	1/e, 2020					
3	Solidity programming Essentials: A beginner's guide to build smart contracts for Ethereum and blockchain	Ritesh Modi	Packt Publishing	1/e, 2018.					

	Video Links (NPTEL, SWAYAM)							
Module No.	Link ID							
1	https://youtube.com/playlist?list=PLrKK422S1aMma8lDA2JJjEUpC2ycuApuC&si=1OXTYDEZ4 A5M8M4Q							
2	https://youtube.com/playlist?list=PLHRLZtgrF2jl8yqucJsMFqh5XpRLTgCI4							
3	https://youtube.com/playlist?list=PL6gx4Cwl9DGBrtymuJUiv9Lq5CAYpN8Gl							
4	https://youtube.com/playlist?list=PLWUCKsxdKl0oksYr6IG_wRsaSUySQC0ck							

GENERATIVE AI

Course Code	PEADT748	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCMT503	Course Type	Theory

Course Objectives:

- 1. To impart the foundational understanding about the principles and concepts behind generative AI models, including GANs, VAEs and Transformer-based architectures like GPT.
- **2.** To educate the learners to apply ethical considerations in the use of generative AI for the responsible use and deployment of generative models.
- **3.** To enable the learners to understand the significance of prompt engineering and cost optimization in generative AI.

Module No.	e Syllabus Description						
1	Generative Modeling - Introduction, Generative Vs. Discriminative Modeling, Advances in Machine Learning, The Rise of Generative Modeling, The Generative Modeling Framework, Challenges of Generative Modeling, Ethical Considerations in Generative AI, Bias and Fairness in Generative AI systems, responsible use and deployment of generative models.	8					
2	Autoencoders - Autoencoders, The Encoder, The Decoder, Joining the Encoder to the Decoder, Analysis of Autoencoder, Variational Autoencoders; Kullback–Leibler (KL) divergence loss function; Generative Adversarial Network - Introduction to GANs, The Discriminator, The Generator, Training the GAN, GAN Challenges, Oscillating Loss, Mode Collapse, Uninformative Loss, Hyper parameters.	10					

3	Recurrent Neural Network (RNN). Architecture of RNN, Long Short-Term Memory (LSTM), Architecture of LSTM, Gated Recurrent Unit (GRU), Architecture of GRU, Encoder-Decoder Models, Question-Answer Generator using RNN and Encoder-Decoder, Architecture, Attention mechanisms, Transformer Architecture, Self Attention, Analysis of the Transformer, BERT ,GPT-2 ,Large Language Models (LLM).	10
4	Cost Optimization in the Development and Operation of Generative AI Applications, Fine Tuning and customizability, Parameter Efficient Fine Tuning Methods, Prompt Tuning, Prefix Tuning, P-Tuning, IA3, Low-Rank Adaptation, Prompt Engineering, Clear and Direct Prompts, Adding Qualifying Words for Brief Responses, Breaking Down the Request, In-context learning (ICL) in LLMs	8

Continuous Internal Evaluation Marks (CIE):

Attendance Assignmer Microproje		Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each module.	• Each question carries 9 marks.	
• Total of 8 Questions, each	• Two questions will be given from each module, out of	
carrying 3 marks	which 1 question should be answered.	60
	• Each question can have a maximum of 3 subdivisions.	00
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the difference between generative and discriminative models and the need to ensure responsible use of generative models.	K2
CO2	Use Variational Autoencoders and GAN to generate new content and enhance existing data.	К3
CO3	Solve real life problems using various neural network based language models.	К3
CO4	Illustrate the significance of Cost Optimization and Prompt Engineering in Generative AI applications.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	-	2	-	3	-	-	-	2
CO2	3	3	3	2	-	-	-	-	-	-	-	2
CO3	2	2	2	2	-	-	-	-	-	-	-	2
CO4	2	2	2	2	-	-	-	-	-	-	-	2

Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year 1/e, 2019				
1	Generative Deep Learning	David Foster	O'Reily					
2	Deep Learning	Ian Goodfellow, Yoshua Bengio, Aaron Courville	MIT press	1/e, 2016				
3.	Large Language Model-Based Solutions: How to Deliver Value with Cost-Effective Generative AI Applications.	Shreyas Subramanian	Wiley	1/e, 2024				

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Deep Learning Illustrated	Jon Krohn, Grant Beyleveld, Aglae Bassens	Pearson	1/e, 2020					
2	Prompt Engineering for Generative AI	James Phoenix, Mike Taylor	O'Reilly	1/e, 2024					
3	GANs in Action: Deep learning with Generative Adversarial Networks	Jakub Langgr, Vladimir Bok	Manning	1/e, 2019					

Video Links (NPTEL, SWAYAM)				
Module No.	Link ID			
1	Deep Generative Models: An Introduction			
-	(https://www.youtube.com/watch?v=v_ksUIpToGk)			
2	Generative Adversarial Networks-Part 01			
_	(https://www.youtube.com/watch?v=LMpyYPzxQ9w)			
3	Introduction to Transformer Architecture			
C C	(https://www.youtube.com/watch?v=cVbGNL0N2RI)			
4	Generative Adversarial Networks-Part 02			
•	(https://www.youtube.com/watch?v=X3SJ2mRodF0)			

COMPUTER VISION

Course Code	PECST745	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To cover the basics of image formation, key computer vision concepts, methods, techniques, pattern recognition, and various problems in designing computer vision and object recognition systems.
- **2.** To enable the learners to understand the fundamentals of computer vision and machine learning models to develop applications in computer vision.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Fundamentals in Computer Vision :- Camera Calibration- Pinhole camera model, Geometric Image Features - Curves, Surfaces, Analytical Image Features - Elements of Analytical Euclidean Geometry, Geometric Camera Parameters, Stereopsis - Binocular Camera Geometry, Epipolar Constraint, Binocular Reconstruction, Local Methods for Binocular Fusion, Global Methods for Binocular Fusion.	9
2	Features and Filters :- Linear Filters- Linear Filters and Convolution, Shift Invariant Linear Systems. Estimating Derivatives with Finite Differences, Noise, Edges and Gradient-based Edge Detectors Image Gradients - Computing the Image Gradient, Gradient Based Edge and Corner Detection. Filters as Templates - Normalized Correlation and Finding Patterns.	

	Machine Learning for Computer Vision :-	
	Machine Learning - Introduction, Dataset for Machine Perception- Labelled	
	and Unlabelled Data, Basics of Classification and Clustering, Multi-Class	
	Perspective. Machine Learning for Computer Vision -Machine Learning -Deep Learning	
3	Use Cases.	9
	Machine Learning Models for Vision - Image Vision-Pretrained Model,	
	Transfer Learning, Fine-Tuning, Convolutional Networks, Convolutional	
	Filters, Stacking Convolutional Layers, Pooling Layers - AlexNet, VGG19, ,	
	Modular architecture - ResNet, Neural Architecture Search Design - NASNet	
	Segmentation and Object detection :-	
	Segmentation Using Clustering Methods - Human vision- Grouping and	
	Gestalt, Applications- Shot Boundary Detection, Background Subtraction,	
	Image Segmentation by Clustering Pixels- Simple Clustering Methods,	
4	Clustering and Segmentation by K-means	9
	Object detection - YOLO, Segmentation-Mask R-CNN and Instance	
	Segmentation, U-Net and Semantic Segmentation, Model Quality Metrics	
	A case study to compare performance of various models on a suitable	
	dataset.	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0)
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the basic concepts and terminologies like Camera Calibration, Stereopsis in computer vision	K2
CO2	Apply filters for feature extraction and for finding patterns.	K3
CO3	Build different machine learning models for computer vision	K3
CO4	Implement segmentation and object detection models	K3
CO5	Analyze different machine learning models for segmentation/object detection.	K4

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3	3								3
CO5	3	3	3	3	3							3

Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Computer vision: A modern approach	Forsyth, David, and Jean Ponce	Prentice hall	2011			
2	Emerging topics in computer vision	Medioni, Gerard and Sing Bing Kang	PHI	2004			
3	Practical Machine Learning for Computer Vision	Valliappa Lakshmanan, Martin Görner, Ryan Gillard	O'Reilly Media	2021			

Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Computer vision: algorithms and applications	Szeliski, Richard	Springer Science & Business Media	2010			
2	Image Segmentation: Principles, Techniques, and Applications	Tao Lei, Asoke K. Nandi	John Wiley & Sons	2022			
3	Deep Learning in Computer Vision Principles and Applications	Ali Ismail Awad, Mahmoud Hassaballah	CRC Press	2020			

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	Computer Vision and Image Processing - Fundamentals and Applications by Prof. M. K. Bhuyan at IIT Guwahati https://onlinecourses.nptel.ac.in/noc23_ee39/preview						
2	Computer Vision by Prof. Jayanta Mukhopadhyay at IIT Kharagpur						
3	https://onlinecourses.nptel.ac.in/noc19_cs58/preview						
4	Deep Learning for Computer Vision by Prof. Vineeth N Balasubramanian at IIT Hyderabad https://onlinecourses.nptel.ac.in/noc21_cs93/preview						
5	COVID-Net Open Source Initiative - COVIDx CT-3 Dataset https://www.kaggle.com/datasets/hgunraj/covidxct						

Course Code	PEADT751	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

COMPUTATIONAL HEALTH INFORMATICS

Course Objectives:

- 1. To impart foundational knowledge in various types of health data, including electronic health records (EHRs), imaging data, genomic data, and patient-generated data.
- **2.** To teach how computational methods can be applied to improve clinical decision-making, enhance patient care, support personalized medicine, and optimize healthcare operations.

Module No.	Syllabus Description	Contact Hours
	Introduction and Emerging Technologies in Health Informatics	
	Definition, scope, and objectives of health informatics, current trends in health	
	informatics, Health informatics frameworks and models, Health data standards	
	(HL7, SNOMED CT, ICD, etc.), Interoperability challenges and solutions,	
1	Data capture, storage, and retrieval in health informatics, Data quality and	10
	integrity.	
	Internet of Things (loT) and its applications in healthcare, Blockchain	
	technology in health informatics, Clinical research informatics, loT devices for	
	healthcare, Data sharing and secondary use of health data.	
	Medical Image Processing	
	Overview of medical image processing and its significance in healthcare,	
	Challenges and opportunities in medical image analysis, Principles of X-ray	
2	imaging, Magnetic Resonance Imaging (MRI) basics, Computed Tomography	9
	(CT) fundamentals, Ultrasound imaging and its characteristics.	
	Image Enhancement Techniques, Image Segmentation, Thresholding	
	techniques for image segmentation, Region-based segmentation algorithms.	
3	Artificial intelligence and Machine Learning in Medical Image Analysis	8

	Artificial intelligence (AI) and machine learning in healthcare, Contrast enhancement methods for medical images, Noise reduction and image denoising techniques, Image sharpening and edge enhancement,, Feature Extraction and Representation. Supervised and unsupervised learning algorithms, Classification and regression techniques for medical image analysis, Performance evaluation and validation of machine learning models	
4	Deep Learning for Medical Image Processing Convolutional Neural Networks (CNNs) for medical image analysis, Segmentation and object detection using deep learning, Transfer learning and pretrained models in medical imaging, Volumetric image analysis and 3D reconstruction, Image-based modeling and simulation, Advanced imaging modalities (functional MRI, diffusion tensor imaging), Artificial intelligence in medical image processing.	9

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each module.	• Each question carries 9 marks.	
• Total of 8 Questions, each	• Two questions will be given from each module, out of	
carrying 3 marks	which 1 question should be answered.	60
	• Each question can have a maximum of 3 subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)	
CO1	Describe health informatics, including its principles, concepts, and applications of computational methods and techniques used in health informatics, illustrate latest trends, advancements, and emerging technologies in computational health informatics.	К3
CO2	Demonstrate application of computational methods and techniques to analyze and manipulate medical images for various purposes, such as diagnosis, treatment planning, and research.	K3
CO3	Use the machine learning techniques to health images to aid in various aspects of healthcare, including diagnosis, treatment planning, and disease monitoring.	К3
CO4	Implement deep learning techniques to analyze and interpret medical images.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										3
CO2	3	3										3
CO3	3	3										3
CO4	3	3										3

	Text Books											
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year								
1	Translational Bioinformatics in Healthcare and Medicine.	Khalid Raza, Nilanjan Dey	Elsevier Science	1/e, 2021								
2	Computational Analysis and Deep Learning for Medical Care: Principles, Methods, and Applications.	Amit Kumar Tyagi	Wiley.	2021								

	Reference Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Introduction to Computational Health Informatics.	Arvind Kumar Bansal, Javed Iqbal Khan, S. Kaisar Alam	CRC Press.	2020						
2	Signal Processing Techniques for Computational Health-informatics.	Ahad, M. and Ahmend, M. U.	Springer	2020						
3	Computational Intelligence and Healthcare Informatics.	Editors: Om Prakash Jena, Alok Ranjan Tripathy, Ahmed A. Elngar, Zdzislaw Polkowski	Wiley	1/e, 2021						
4	Computational Intelligence for Machine Informatics Learning and Healthcare.	R Srivastava, PK Mallick, SS Rautaray, M Pandey	De Gruyter	2020						
5	Healthcare Systems and Health Informatics: Using Internet of Things.	PS Mehra, LM Goyal, A Dagur, AK Dwivedi	CRC Press.	1/e, 2022						

Course Code	PECST752	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

RESPONSIBLE ARTIFICIAL INTELLIGENCE

Course Objectives:

- 1. To impart the ideas of fairness, accountability, bias, and privacy as fundamental aspects of responsible AI.
- **2.** To teach the principles of interpretability techniques including simplification, visualization, intrinsic interpretable methods, and post hoc interpretability for AI models.
- **3.** To give the learner understanding of the ethical principles guiding AI development, along with privacy concerns and security challenges associated with AI deployment.

Module No.	Syllabus Description	Contact Hours				
	Foundations of Responsible AI :-					
	Introduction to Responsible AI- Overview of AI and its societal impact;					
1	Fairness and Bias - Sources of Biases, Exploratory data analysis, limitation	7				
	of a dataset, Preprocessing, inprocessing and postprocessing to remove bias.					
	Interpretability and explainability:-					
	Interpretability - Interpretability through simplification and visualization,					
	Intrinsic interpretable methods, Post Hoc interpretability, Explainability					
2	through causality, Model agnostic Interpretation.					
	Interpretability Tools - SHAP (SHapley Additive exPlanation), LIME(Local					
	Interpretable Model-agnostic Explanations)					
	Ethics, Privacy and Security :-					
	Ethics and Accountability -Auditing AI models, fairness assessment,					
3	Principles for ethical practices.					
	Privacy preservation - Attack models, Privacy-preserving Learning,					
	Differential privacy- Working, The Laplace Mechanism, Introduction to					

	Federated learning. Security - Security in AI Systems, Strategies for securing AI systems and protecting against adversarial attacks	
4	 Future of Responsible AI and Case Studies : - Future of Responsible AI - Emerging trends and technologies in AI ethics and responsibility. Case Studies - Recommendation systems, Medical diagnosis, Computer Vision, Natural Language Processing. 	9

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome					
CO1	Identify and describe key aspects of responsible AI such as fairness, accountability, bias, and privacy.	K2				
CO2	Describe AI models for fairness and ethical integrity.	K2				
CO3	Understand interpretability techniques such as simplification, visualization, intrinsic interpretable methods, and post hoc interpretability.	K2				
CO4	Comprehend the ethical principles, privacy concerns, and security challenges involved in AI development and deployment.	К3				
C05	Understand responsible AI solutions for practical applications, balancing ethical considerations with model performance.	K3				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3
CO5	3	3	3									3

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Responsible Artificial Intelligence: How to Develop and Use AI in a Responsible Way	Virginia Dignum	Springer Nature	1/e, 2019			
2	Interpretable Machine Learning	Christoph Molnar	Lulu	1/e, 2020			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	ResponsibleAI Implementing Ethical and Unbiased Algorithms	Sray Agarwal, Shashin Mishra	Springer Nature	1/e, 2021			

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://youtu.be/3-xhMXeYIcg?si=x8PXrnk0TabaWxQV					
2	https://youtu.be/sURHNhBMnFo?si=Uj0iellJs3oLOmDL [SHAP and LIME] https://c3.ai/glossary/data-science/lime-local-interpretable-model-agnostic-explanations/ https://shap.readthedocs.io/en/latest/ https://www.kaggle.com/code/bextuychiev/model-explainability-with-shap-only-guide-u-need					
3	https://www.youtube.com/live/DA7ldX6OIG4?si=Dk4nW1R1zi_UMG_4					
4	https://youtu.be/XlYhKwRLerc?si=IeU7C0BLhwn9Pvmi Case Studies https://www.kaggle.com/code/teesoong/explainable-ai-on-a-nlp-lstm-model-with-lime https://www.kaggle.com/code/victorcampelo/using-lime-to-explaining-the-preditions-from-ml					

Course Code	PECDT751	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

GRAPH DATABASES AND ANALYSIS

Course Objectives:

- 1. To provide an insight into graph databases, and to study in detail the technology in designing graph databases.
- **2.** To give the student an understanding of data modelling with graphs, to learn different graph algorithms and to do predictive analysis of graphs in real world applications.

Module No.	Syllabus Description	Contact Hours
	Introduction to the Graph Data Model:	
	Graphs as the future of data, The relevance of data relationships, High-level	
1	view of Graph Space, The Power of Graph Databases, Options for Storing	9
	Connected Data: Relational Databases Limitations, NoSQL Databases, Graph	
	Databases, Defining Graph Analytics and Graph Data Science.	
	Data Modelling with Graph:	
	Models and Goals, The Property Graph Model,	
	Querying Graphs: An Introduction to Cypher, Other Cypher Clauses,	
2	Comparison of Relational and Graph Modelling, Cross Domain Models,	9
	Common Modelling Pitfalls.	
	Building a Graph Database Application: Data Modelling, Application	
	Architecture, Redundancy	
	Graph Algorithms:	
	Graph Algorithms in Neo4j, Graph Algorithm Concepts, The Neo4j Graph	0
3	Algorithms Library, Pathfinding and Graph Search Algorithms, Centrality	9
	Algorithms, Community Detection Algorithms, Graph Algorithms in Practice	

	Predictive Analysis with Graph Theory in Real World:	
	Real-World Examples, Looking at Graphs in the Health Industry. Graph	
	Database Internals: Native Graph Processing, Native Graph Storage,	
4	Programmatic APIs, Non-functional Characteristics	10
	Depth and Breadth-First Search, Path-Finding with Dijkstra's Algorithm, The	
	A* Algorithm, Graph Theory and Predictive Modelling	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each module.	• Each question carries 9 marks.	
• Total of 8 Questions, each	• Two questions will be given from each module, out of	
carrying 3 marks	which 1 question should be answered.	60
	• Each question can have a maximum of 3 subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
C01	Explain the key concepts of NoSQL and Graph databases by understanding the new database models, and how these databases fit into the overall ecosystem.	K2
CO2	Apply appropriate techniques to design a property graph data model and build graph database applications for entity-relationship, and modelling objects.	K3
CO3	Apply appropriate algorithms in Neo4j graph databases, and model solutions for computing problems.	К3
CO4	Use appropriate predictive analysis with graph theory for processing, storing, searching and modelling in real world applications.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Graph Databases	Ian Robinson, Jim Webber Emil Eifrem.	O'Reilly	2/e, 2015				
2	Graph Data Science for dummies: Predicting Changing Demand Patterns in the New Digital Economy	Pierson, Lillian.	John Wiley & Sons	3/e, 2021				
5	A Comprehensive Guide to Graph Algorithms	Mark Needham, Amy E. Hodler,	Neo4j.com	1/e,2020				
4	Graph Databases for Beginners	Bryce Merkl Sasaki, Joy Chao & Rachel Howard	Neo4j.com	1/e, 2020				

	Reference Books						
Sl. No	Title of the Book	Name of the Publisher	Edition and Year				
1	Big data for diimmies	Hurwitz, Judith S., Alan Nugent, Fern Halper, and Marcia Kaufman.	John Wiley & Sons	1/e, 2013			

DIGITAL FORENSICS

(Common with CS/CM/CA/CD/CR/AI/AM/AD)

Course Code	PECST754	CIE Marks	40
Teaching Hours/Week (L:T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To impart the fundamental knowledge on incident management and reporting.
- **2.** To provide a good understanding on devices, operating systems, network and mobile forensics.

Module No.	Syllabus Description			
	Introduction to Digital Forensics - Principles in Digital Forensics; Stages in			
	Digital Forensics Investigation- Forensics Imaging & Cloning, Concept of			
	Chain of Custody, Digital Evidence Handling at Crime Scene,			
	Collection/Acquisition and Preservation of Digital Evidence, Processing &			
	Analysis, Compilation of Findings & Reporting; Expansion of Stages in			
	Digital Investigation.			
	Types of Storage Media - Hard Disk Drives (HDD), Solid State Drives			
	(SSD), USB Flash Drives, Optical Discs, Memory Cards, Cloud Storage,			
	Drive Geometry, Cylinders, Heads, and Sectors, Logical Block Addressing			
1	(LBA); Expansion of Types of Storage Medium.	10		
	Overview of File Systems - Introduction to File Systems, File Systems in			
	Digital Forensics, FAT (File Allocation Table), Structure and Characteristics			
	: FAT12, FAT16, FAT32, NTFS (New Technology File System), Structure			
	and Characteristics, Master File Table (MFT), EXT (Extended File System),			
	EXT2, EXT3, EXT4, Journaling in EXT3 and EXT4, HFS (Hierarchical File			
	System), HFS and HFS+ Structure and Characteristics, Metadata and			
	Attributes			
	Tools suggested : Hex Viewer, FTK Imager, OS Forensics			

	Windows Forensics - OS Artefacts, Registry Analysis, Analysis of USB	
	Connections, Event Logs, Applications, Slack Space, Overwritten Files, Data	
	Recovery Techniques, Volatile and Non-Volatile Data, Hibernation file	
	analysis, Pagefile analysis, prefetch files, thumbnails, Timestamps, File	
	Signatures, File System Analysis Tools, Techniques for Recovering Deleted	
2	Files, File Carving; Memory Forensics - RAM dump and analysis; Linux	9
	and MAC Forensics; Anti Forensics Methods - Steganography, Encryption,	
	Alternate Data Streams.	
	Tools suggested : Hex Viewer, FTK Imager, Autopsy, RegRipper, Volatility,	
	Dumpit	
	Mobile Forensics - Introduction to Mobile Forensics, Mobile Forensics	
	Fundamentals, Understanding Mobile Device Storage, Android, iOS,	
	Windows OS Artifacts, ADB (Android Debug Bridge), APK Files,	
	Techniques for Acquiring Data from Mobile Devices, Rooting, Jailbreaking.	
	Analysis of Application Files - Social Media Files, Understanding and	
3	Analyzing APK Files, Messages, Malware Analysis, Cloud Data in Mobile	9
	Forensics, Analyzing Backups and Cloud Data, Advanced Data Recovery	
	Techniques (Bypassing Encryption, Password Cracking), Challenges in	
	Mobile Forensics.	
	Tools suggested : MobileCheck, BlueStacks(Android Emulator), SQLite	
	Database viewer	
	Network Forensics - Introduction to Network Forensics, Overview of	
	Network Architectures and Protocols, Capturing and Analyzing Network	
	Traffic using Wireshark/Tcpdump, Log Analysis, Email and Web Forensics,	
	Email Header Analysis; Endpoint Security systems - Intrusion Detection	
4	Systems, Firewall, Router Forensics, NAS, Proxy, VPN; Public Key	8
	Infrastructure Systems; Digital Signature - Concepts of Public Key and	
	Private Key, Certification Authorities and Their Role, Creation and	
	Authentication of Digital Signature.	
	Tools Suggested : Wireshark , Apache Log Viewer	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each of which 1 question should be answered.		60
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Perform forensics analysis of hard disk, Network, and mobile phones.	К3
CO2	Experiment with the network traffic dump.	К3
CO3	Examine the analyse logs of the systems and identify the anomalies.	K3
CO4	Plan an onsite triage in case of an incident.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									2
CO2	3	3	3		3							2
CO3	3	3	3		3							2
CO4	3	3	3		3							2

	Reference Books						
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Digital Forensics and Incident Response	Gerard Johansen	Packt	2/e, 2020			
2	Guide to Computer Forensics and Investigations	Bill Nelson, Amelia Phillips, Christopher Steuart	Cengage	6/e, 2020			
3	Practical Mobile Forensics	Rohit Tamma, Oleg Skulkin , Heather Mahalik, Satish Bommisetty	Packt	4/e, 2020			
4	Mobile Forensics - Advanced Investigative Strategies	Oleg Afonin, Vladimir Katalov	Packt	1/e, 2016			
5	Network Forensics : Tracking Hackers Through Cyberspace	Sherri Davidoff, Jonathan Ham	Pearson	1/e, 2013			
6	File system forensic analysis	Brian Carrier	Addison- Wesley	1/e, 2005			
7	Windows Forensics: The Field Guide for Corporate Computer Investigations	Chad Steel	Wiley	1/e, 2006			
8	Android Forensics: Investigation, Analysis and Mobile Security for Google Android	Andrew Hoog	Syngress	1/e, 2011			

	Video Links (NPTEL, SWAYAM)				
No.	No. Link ID				
1	https://onlinecourses.swayam2.ac.in/cec20_lb06/preview				
2	https://www.swgde.org/documents/published-by-committee/quality-standards/				
3	https://csrc.nist.gov/pubs/sp/800/101/r1/final				

Course Code	PECST756	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

GAME THEORY AND MECHANISM DESIGN

Course Objectives:

- **1.** To equip students with a general purpose tool to analyze strategic behavior in multi-agent interaction
- 2. To discuss the mathematical details of analyzing and designing strategic interactions.

Module No.	Syllabus Description	Contact Hours
1	Introduction to Game Theory - Competitive equilibrium, Rationality; Strategic Games - Dominance, Nash equilibrium, Maxmin strategies, elimination of dominated strategies, preservation of pure Nash equilibrium (PSNE), matrix games, relation between maxmin and PSNE in matrix games Mixed strategies, mixed strategy Nash equilibrium (MSNE), finding MSNE, MSNE characterization theorem, algorithm to find MSNE	8
2	Correlated equilibrium (CE) - Computing CE, extensive form games, subgame perfection, limitations of subgame perfect Nash equilibrium; Imperfect information extensive form games (IIEFG) - strategies in IIEFGs, equivalence of strategies in IIEFGs, perfect recall, Equilibrium in IIEFG; Game theory application - P2P file sharing; Bayesian games - strategy and utility in Bayesian games, equilibrium in Bayesian games.	11
3	Introduction to mechanism design - revelation principle, introduction and proof of Arrow's impossibility result, introduction to social choice setup; Introduction and proof of Gibbard-Satterthwaite theorem, domain restriction, median voter theorem; Task sharing domain, uniform rule, mechanism design with transfers, examples of quasi-linear preferences, Pareto optimality and Groves payments	9

4	Introduction to VCG mechanism, VCG in Combinatorial allocations, applications to Internet advertising, slot allocation and payments in position auctions, pros and cons of VCG mechanism; Affine maximizers, single	8
	object allocation, Myerson's lemma, optimal mechanism design; Single and	
	multi-agent optimal mechanism design, examples of optimal mechanisms	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part B	Total
• Each question carries 9 marks.	
• Two questions will be given from each module, out	
of which 1 question should be answered.	(0)
• Each question can have a maximum of 3	60
subdivisions.	
(4x9 = 36 marks)	
	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions.

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Differentiate between different types of games Identify various equilibria within games	К3			
CO2	Identify strategic interactions.	К3			
CO3	Describe the basic concepts of non-cooperative and cooperative games.	K2			
CO4	Apply the concepts in different game scenarios.	К3			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	An Introduction to Game Theory	Martin Osborne	Cambridge University Press	1/e, 2004			
2	Game Theory and Mechanism Design	Y. Narahari	World Scientific and IISc Press	1/e, 2013			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Game Theory 101: The Complete Textbook	William Spaniel	Self	1/e,			
2	Game Theory - An Introduction	Steven Tadelis	Princeton University Press	1/e, 2013			

	Video Links (NPTEL, SWAYAM)
Module No.	Link ID
1	https://archive.nptel.ac.in/courses/106/101/106101237/
2	https://www.masfoundations.org/

HIGH PERFORMANCE COMPUTING

(Common to CS/CR/CM/CD/CA/AM/AD)

Course Code	PECST757	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To Gain an understanding of the modern processor architectures.
- 2. To Give an introduction to parallel programming using OpenMP and MPI.

Module	Syllabus Description	Contact
No.		Hours
1	Modern processors: Stored-program computer architecture- <i>General-</i> <i>purpose cache-based microprocessor architecture</i> - Performance metrics and benchmarks -Moore's Law - Pipelining - Super scalarity - SIMD - <i>Memory hierarchies</i> - Cache , Cache mapping, Prefetch, Multicore processors - Multithreaded processors - <i>Vector processors</i> - Design principles - Maximum performance estimates - Programming for vector architectures.	9
2	 Parallel computers - Taxonomy of parallel computing paradigms - Shared-memory computers - Cache coherence - UMA, ccNUMA, Distributed-memory computers - Hierarchical (hybrid) systems - Networks - Basic performance characteristics of networks, Buses, Switched and fat- tree networks - Mesh networks - Hybrids. 	9
3	Shared-memory parallel programming with OpenMP:- Short introduction to OpenMP - Parallel execution - Data scoping - OpenMP worksharing for loops - Synchronization, Reductions, Loop scheduling, Tasking,Miscellaneous, Case study: OpenMP-parallel Jacobi algorithm	9

ſ		Distributed-memory parallel programming with MPI:-	
		Message passing - A short introduction to MPI, A simple example,	
		Messages and point-to-point communication, Collective communication,	
	4	Nonblocking point-to-point communication, Virtual topologies. Example-	9
		MPI parallelization of a Jacobi solver - MPI implementation - Performance	
		properties.	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Describe parallel computing architectures supported by modern processors.	K2
CO2	Classify parallel computing paradigms and network topologies.	K2
CO3	Implement shared-memory parallel programming with OpenMP.	K3
CO4	Design and implement parallel algorithms using distributed- memory parallel programming with MPI	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										3
CO2	3	2										3
CO3	3	3	3	2								3
CO4	3	3	3	2								3

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Introduction to High Performance Computing for Scientists and Engineers	Georg Hager Gerhard Wellein	CRC Press	1/e, 2011					
2	High Performance Computing: Modern Systems and Practices	Thomas Sterling, Maciej Brodowicz, Matthew Anderson	Morgan Kaufmann	1/e, 2017					

	Reference Books										
SI. No	Title of the Book	ame of the Author/s	Name of the Publisher	Edition and Year							
1	Parallel and High-Performance Computing	Robert Robey Yuliana Zamora	Manning Publications	1/e, 2021							
2	High-Performance Computing	Charles Severance Kevin Dowd	O'Reilly Media	2/e, 1998							
3	Computer Architecture And Parallel Processing	Kai Hwang Faye Alaye Briggs	McGraw-Hill	1/e, 1984							
4	Computer Architecture: A Quantitative Approach	John L. Hennessy David A. Patterson	Morgan Kaufman	6/e, 2017							

	Video Links (NPTEL, SWAYAM)								
Module No.	Link ID								
1	https://nptel.ac.in/courses/106108055								
2	https://nptel.ac.in/courses/106108055								
3	https://nptel.ac.in/courses/106108055								
4	https://nptel.ac.in/courses/128106014								

PROGRAMMING LANGUAGES

(Common to CS/CR/CM/CA/AD/AM)

Course Code	PECST758	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To enable the students understand various constructs and their respective comparisons in different high-level languages so that he can choose a suitable programming language for solving a particular problem
- **2.** To develop the student's ability to understand the salient features and paradigms in the landscape of programming languages.

Module No.	Syllabus Description	Contact Hours
1	Introduction - The Origins of Programming Languages, Abstractions in Programming Languages, Computational Paradigms, Language Definition, Language Translation, The Future of Programming Languages; Language Design Criteria - Historical Overview, Efficiency, Regularity, Security, Extensibility, C++: An Object-Oriented Extension of C, Python: A General- Purpose Scripting Language; Syntax and Analysis Parsing: Lexical Structure of Programming Languages, Context-Free Grammars and BNFs, Parse Trees and Abstract Syntax Trees, Ambiguity, Associativity, and Precedence, EBNFs and Syntax Diagrams, Parsing Techniques and Tools, Lexics vs. Syntax vs. Semantics, Case Study: Building a Syntax Analyzer for TinyAda;	9
2	 Basic Semantics- Attributes, Binding, and Semantic Functions, Declarations, Blocks, and Scope, The Symbol Table, Name Resolution and Overloading, Allocation, Lifetimes, and the Environment, Variables and Constants, Aliases, Dangling References, and Garbage, Case Study: Initial Static Semantic Analysis of TinyAda. Data Types - Data Types and Type Information, Simple Types, Type Constructors, Type Nomenclature in Sample Languages, Type Equivalence, 	9

	Type Checking, Type Conversion, Polymorphic Type Checking, Explicit	
	Polymorphism, Case Study: Type Checking in TinyAda.Expressions and Statements - Expressions, Conditional Statements and	
	Guards, Loops and Variations on WHILE, The GOTO Controversy and Loop Exits, Exception Handling, Case Study: Computing the Values of Static Expressions in TinyAda.	
3	Procedures and Environments- Procedure Definition and Activation, Procedure Semantics, Parameter-Passing Mechanisms, Procedure Environments, Activations, and Allocation, Dynamic Memory Management,	9
	Exception Handling and Environments, Case Study: Processing Parameter Modes in TinyAda.	
	Abstract Data Types and Modules- The Algebraic Specification of Abstract Data Types, Abstract Data Type Mechanisms and Modules, Separate	
4	Compilation in C, C++ Namespaces, and Java Packages, Ada Packages, Modules in ML, Modules in Earlier Languages, Problems with Abstract Data Type Mechanisms, The Mathematics of Abstract Data Types.	9

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the history of programming languages and introduce abstraction, the concept of different language paradigms, and an overview of language design criteria.	K1
CO2	Describe how the syntactic structure of a language can be precisely specified using context-free grammar rules in Backus-Naur form (BNF).	К2
CO3	Explain the abstractions of the operations that occur during the translation and execution of programs.	К2
CO4	Apply the data types in various languages	K3
CO5	Apply procedure activation and parameter passing; and exceptions and exception handling.	K4

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2									3
CO2	2	3	2									3
CO3	3	2	2									3
CO4	3	3	3									3
CO5	3	3	3									3

	Text Books							
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Programming languages: principles and practices.	Kenneth C Louden	Cengage Learning	3/e, 2011				
2	Concepts of programming languages.	Sebesta R W.	Pearson	12/e, 2023				
3	Programming languages: concepts and constructs.	Sethi R	Pearson	2/e, 2006				

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Programming Languages: Principles and Paradigms	Allen Tucker, Robert Noonan	McGraw-Hill	2/e, 2017					
2	Principles of programming languages.	Gilles Dowek.	Springer	1/e, 2009.					
3	Principles of Programming Languages	Rajiv Chopra	Wiley	1/e, 2019					

	Video Links (NPTEL, SWAYAM)						
No.	No. Link ID						
1	1 https://archive.nptel.ac.in/courses/106/102/106102067/						

TIME SERIES MODELLING

Course Code	PEADT755	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

1. To help the students in understanding the usability of time series data and its analysis and time series models that can be used in different time series models that can be used in scientific/business application.

Module No.	Syllabus Description	Contact Hours				
	Introduction to time series forecasting: Forecasting, Types of forecasting -					
	Short term, long term. Forecasting data and methods – Qualitative forecasting, Quantitative forecasting. Simple Forecasting methods- Average method, Naïve method, Drift Method. Steps in forecasting. Introduction to Time series					
	forecasting – Time Series Characteristics – Types of Data – Time Series Data, Cross-Section Data, Longitudinal Data. Understanding Time Series Data, Time series pattern- trend, seasonality, cyclicity, and irregularity. Detecting					
1	1 Trends using Hodrick-Prescott filter and Detrending time series. Detecting					
	Seasonality and De-seasoning, Detecting Cyclic Variation. Error, Irregular					
	Component and residuals. Time Series Decomposition- Additive Models,					
	Multiplicative models. Data wrangling and preparation for time series using					
	python- Loading Data, Exploring Pandas and pandasql, Ascending and					
	Descending Data order, Aggregation, Join, Data Resampling by week, month,					
	quarter, year, Handling Missing Data.					
	Exponential Smoothing :Simple exponential smoothing, Methods with trend,					
2	methods with seasonality, estimation and modelling, Forecasting with ETS	0				
2	models.	9				

	Regression Extension Techniques for time series data: Types of stationary	
	behaviour in time series, Making data stationary, Augmented Dickey-Fuller	
	Test, Using stationary data techniques - Differencing, Random walk, Trend	
	Differencing, Seasonal Differencing.	
	Time series as a discrete parameter stochastic process, Auto- correlation	
	Function (ACF), Partial Autocorrelation Function (PACF) and cross	
	correlations, Auto Correlation Plots - Trend and seasonality in ACF plots.	
	Autoregressive (AR), Moving Average (MA), Autoregressive Moving	
	Average (ARMA), Autoregressive Integrated Moving Average (ARIMA)	
3	models, Seasonal ARIMA (SARIMA) models.	9
	Introduction to Multivariate Time series Modelling, Vector Autoregressive	
	models, Vector ARMA Models, Fitting VAR and VARMA models.	
	Dynamic Regression Models - Estimation, Regression with ARIMA errors	
	using R packages (fable), forecasting, stochastic and deterministic trends.	
4	Introduction to Hierarchical Time series and Grouped Time series with suitable examples. Advanced Forecasting models- Prophet model, Neural Network models, Bootstrapping and Bagging.	9

Continuous Internal Evaluation Marks (CIE):

Attendance	Internal Ex	Evaluate	Analyse	Total
5	15	10	10	40

Criteria for Evaluation (Evaluate and Analyse): 20 marks

Assess the students with questions of the following nature

Time Series Decomposition:

• "Given a dataset exhibiting seasonality and trend, decompose the time series using both additive and multiplicative models. Compare the results and analyze which model better fits the data and why."

ACF and PACF Analysis:

• "Analyze the ACF and PACF plots for the given time series data. Identify the presence of any significant trends or seasonality and justify which time series model (AR, MA, or ARMA) would be most appropriate for forecasting based on these plots."

Model Selection for Forecasting:

• "Evaluate the performance of ARIMA and Prophet models on the same time series dataset. Discuss their respective advantages and disadvantages in terms of accuracy, computational efficiency, and applicability to different types of time series patterns."

Dynamic Regression Models:

• "Using a given dataset, implement and evaluate a dynamic regression model with ARIMA errors. Assess the model's forecasting performance compared to a standard ARIMA model and discuss the impact of incorporating external regressors.

End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24 marks) 	out of which 1 question should be answered.	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
C01	Explain different types of forecasting, fundamental principles of time series data, analyse various time series processes and gain proficiency in preparing and wrangling time series data.	
CO2	Apply and interpret a variety of time series models and determine the most suitable model for various types of time series data.	K4
CO3	Apply exponential smoothing methods for forecasting and analyse time series patterns.	К3
CO4	Implement dynamic regression models and develop proficiency in advanced forecasting methods.	К5

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3						3	3
CO2	3	3	3	3	3						3	3
CO3	3	3	3	3	3						3	3
CO4	3	3	3	3	3						3	3

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Forecasting: Principles and Practice	Robin John yndman, George Athanasopoulos	OTexts	3/e, 2021				
2	Hands-on Time Series Analysis with Python	BV Vishwas, Ashish Patel	Apress	1/e, ,2020				
3	The Analysis of Time Series An Introduction with R	Chris Chatfield, Haipeng Xing	Chapman & Hall	7/e, 2019				

	Reference Books							
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year 1/e, 2006				
1	Time series Analysis and its Applications.	Shumway, R. H and Stoffer	Springer					
2	Time Series Analysis and Its Applications: With R Examples	Robert H. Shumway and David S. Stoffer	Springer	4/e, 2017				
3	Time Series Analysis: Forecasting and Control	George E. P. Box, Gwilym M. Jenkins, and Gregory C. Reinsel	Wiley	5/e, 2015				
4	Applied Time Series Analysis	Wayne A. Woodward, Henry L. Gray, and Alan C. Elliott	CRC Press	7/e, 2017				

Video Links (NPTEL, SWAYAM)			
Module No.	Link ID		
1	https://onlinecourses.nptel.ac.in/noc21_ch28/preview		

CYBER SECURITY

Course Code	OECST721	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Nil	Course Type	Theory

Course Objectives:

- 1. To teach the basic attacks, threats and vulnerabilities related to cyber security
- 2. To make the learner aware of cyber crimes and cyber laws
- **3.** To give concepts of the malwares and its protection mechanisms in systems and mobile devices

Module No.	Syllabus Description	Contact Hours
1	Introduction to Cyber Security :- Basic Cyber Security Concepts, Layers of Security, Vulnerability, Threats, Computer Criminals, CIA Triad, Motive of Attackers, Active attacks, Passive attacks, Software attacks, Hardware attacks, Cyber Threats and its Classifications- Malware, Social Engineering, DoS/DDoS, Insider Threats, Advanced Persistent Threats (APTs), Data Breaches and Information Theft.	9
2	Cybercrime and CyberLaw :- Cybercrime, Classification of Cybercrimes, The legal perspectives- Indian perspective, Global perspective, Categories of Cybercrime. Fundamentals of cyber law, Outline of legislative framework for cyber Law, History and emergence of cyber law, Outreach and impact of cyber law, Major amendments in various statutes.	9
3	Malwares and Protection against Malwares :- Virus, Worms, Trojans, Spyware, Adware, Key-logger, Ransomware, Common Methods of Malware Propagation- Email Attachments, Malicious Websites, Removable Media, File Sharing Networks, Malvertising, Protection against Malware- Antivirus/Antimalware Software, Regular Software Updates, Email Filtering, Web Filtering, Data Backup and Recovery, Strong Passwords and Multi-Factor Authentication (MFA).	9

	Mobile App Security :-	
4	Security Implications of Mobile Apps, Mobile App Permission Management	
	and Best Practices, Risks of Location-Based Social Networks, Data Security on	
	Mobile Devices- Importance of Data Security on Mobile Devices to Protect	9
	Sensitive Information, Risks of Unencrypted Data Storage and Communication	
	on Mobile Platforms, Benefits of Device Encryption, Secure Messaging Apps,	
	and Encrypted Storage Solutions.	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0)
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the attacks, security mechanisms and services to user information	K2
CO2	Identify the cybercrimes and discuss the cyber laws against the crimes	K2
CO3	Discuss the malwares and the protection mechanisms against malwares	K3
CO4	Describe the issues and solutions related with mobile applications	К2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3										2
CO2	2	3	2									2
CO3	2	3	2									2
CO4	2	3	2									2

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Computer Security: Principles and Practices	William Stallings	Pearson	5/e, 2011			
2	Cyber Security- Understanding Cyber Crimes, Computer Forensics and Legal Perspectives	Nina Godbole, Sunit Belapure	Wiley	1/e, 2011			
3	Computer and Cyber Security: Principles, Algorithm, Applications, and Perspectives	B.B.Gupta, D.P Agrawal, Haoxiang Wang.	CRC Press	1/e, 2018			
4	Cyber Security Essentials	James Graham, Richard Howard, Ryan Otson	Auerbach	1/e, 2010			

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://archive.nptel.ac.in/courses/111/101/111101137/				
2	https://jurnal.fh.unila.ac.id/index.php/fiat/article/download/2667/1961/12044 https://www.coursera.org/learn/data-security-privacy#modules				
3	https://nptel.ac.in/courses/106105217				
4	https://archive.nptel.ac.in/courses/106/106/106106156/				

CLOUD COMPUTING

Course Code	OECST722	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To understand the core principles, architecture, and technologies that underpin cloud computing, including virtualization, data storage, and cloud services.
- **2.** To equip students with the skills to use cloud computing tools effectively, implement cloud-based applications, and address security challenges within cloud environments.

Module No.	Syllabus Description	Contact Hours
1	Introduction - Cloud Computing, Types of Cloud, Working of Cloud Computing, Cloud Computing Architecture - Cloud Computing Technology, Cloud Architecture, Cloud Modelling and Design.	8
2	Virtualization - Foundations, Grid, Cloud And Virtualization, Virtualization And Cloud Computing; Data Storage And Cloud Computing - Data Storage, Cloud Storage, Cloud Storage from LANs to WANs.	9
3	Cloud Computing Services - Cloud Computing Elements, Understanding Services and Applications by Type, Cloud Services; Cloud Computing and Security - Risks in Cloud Computing, Data Security in Cloud, Cloud Security Services.	10
4	Cloud Computing Tools - Tools and Technologies for Cloud, Apache Hadoop, Cloud Tools; Cloud Applications - Moving Applications to the Cloud, Microsoft Cloud Services, Google Cloud Applications, Amazon Cloud Services.	9

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	e somination_l		Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Articulate the fundamental concepts of cloud computing, its types, and how cloud computing architecture operates.	К2
CO2	Understand and describe the foundations of virtualization, its relationship with cloud computing.	К2
СО3	Describe various cloud computing services, understand the different service models, and identify potential risks.	К3
CO4	Demonstrate proficiency in using cloud computing tools such as Apache Hadoop, and deploy applications using popular cloud platforms.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2									2
CO2	2	2	2	2								2
CO3	2	2	2	2								2
CO4	2	2	2	2								2

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Cloud Computing: A Practical Approach for Learning and Implementation	A.Srinivasan, J.Suresh	Pearson	1/e, 2014		

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Cloud Computing : Concepts, Technology, Security, and Architecture	Thomas Erl	Pearson	2/e, 2023			
2	Cloud Computing	Sandeep Bhowmik	Cambridge University Press	1/e, 2017			
3	Cloud Computing: A Hands-On Approach	Arshdeep Bahga and Vijay Madisetti	Universities Press	1/e, 2014			

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://onlinecourses.nptel.ac.in/noc21_cs14/preview				

SOFTWARE ENGINEERING

Course Code	OECST723	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- To Provide fundamental knowledge in the Software Development Process including Software Development, Object Oriented Design, Project Management concepts and technology trends.
- 2. To enable the learners to apply state of the art industry practices in Software development.

Module No.	Syllabus Description	Contact Hours
1	 Introduction to Software Engineering and Process Models - Software engineering, Software characteristics and types, Layers of Software Engineering-Process, Methods, Tools and Quality focus. Software Process models – Waterfall, Prototype, Spiral, Incremental, Agile model – Values and Principles. Requirement engineering - Functional, Non-functional, System and User requirements. Requirement elicitation techniques, Requirement validation, Feasibility analysis and its types, SRS document characteristics and its structure. Case study: SRS for College Library Management Software 	9
2	Software design - Software architecture and its importance, Software architecture patterns: Component and Connector, Layered, Repository, Client-Server, Publish-Subscribe, Functional independence – Coupling and Cohesion <i>Case study:</i> Ariane launch failure	10

	Object Oriented Software Design - UML diagrams and relationships- Static	
	and dynamic models, Class diagram, State diagram, Use case diagram,	
	Sequence diagram	
	Case Studies: Voice mail system, ATM Example	
	Software pattern - Model View Controller, Creational Design Pattern types -	
	Factory method, Abstract Factory method, Singleton method, Prototype	
	method, Builder method. Structural Design Pattern and its types - Adapter,	
	Bridge, Proxy, Composite, Decorator, Façade, Flyweight. Behavioral Design	
	Pattern	
	Coding, Testing and Maintenance:	
	Coding guidelines - Code review, Code walkthrough and Code inspection,	
	Code debugging and its methods.	
	Testing - Unit testing , Integration testing, System testing and its types, Black	
	box testing and White box testing, Regression testing	
3	Overview of DevOps and Code Management - Code management, DevOps	10
	automation, Continuous Integration, Delivery, and Deployment (CI/CD/CD),	
	<i>Case study</i> – Netflix.	
	Software maintenance and its types- Adaptive, Preventive, Corrective and	
	Perfective maintenance. Boehm's maintenance models (both legacy and non-	
	legacy)	
	Software Project Management - Project size metrics - LOC, Function points	
	and Object points. Cost estimation using Basic COCOMO.	
	Risk management: Risk and its types, Risk monitoring and management model	
4	Software Project Management - Planning, Staffing, Organisational structures,	7
	Scheduling using Gantt chart. Software Configuration Management and its	
	phases, Software Quality Management - ISO 9000, CMM, Six Sigma for	
	software engineering.	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Plan the system requirements and recommend a suitable software process model.	К3
CO2	Model various software patterns based on system requirements.	K3
СО3	Apply testing and maintenance strategies on the developed software product to enhance quality.	К3
CO4	Develop a software product based on cost, schedule and risk constraints.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Software Engineering: A practitioner's approach	Roger S. Pressman	McGraw-Hill	8/e, 2014				
2	Software Engineering	Ian Sommerville	Addison-Wesley	10/e, 2015				
3	Design Patterns, Elements of Reusable Object Oriented Software	Erich Gamma,Richard Helm, Ralph Johnson,John Vlissides	Pearson Education Addison-Wesley	1/e, 2009				

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Pankaj Jalote's Software Engineering: With Open Source and GenAI	Pankaj Jalote	Wiley India	1/e, 2024			
2	Software Engineering: A Primer	Waman S Jawadekar	Tata McGraw-Hill	1/e, 2008			
3	Object-Oriented Modelling and Design with UML	Michael Blaha, James Rumbaugh	Pearson Education.	2/e, 2007			
4	Software Engineering Foundations : A Software Science Perspective	Yingux Wang	Auerbach Publications	1/e, 2008			
5	Object-Oriented Design and Patterns	Cay Horstmann	Wiley India	2/e, 2005			
6	Engineering Software Products: An Introduction to Modern Software Engineering	Ian Sommerville	Pearson Education	1/e, 2020			

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://www.youtube.com/watch?v=Z6f9ckEElsU					
2	https://www.youtube.com/watch?v=1xUz1fp23TQ					
3	http://digimat.in/nptel/courses/video/106105150/L01.html					
4	https://www.youtube.com/watch?v=v7KtPLhSMkU					
2	https://archive.nptel.ac.in/courses/106/105/106105182/					

COMPUTER NETWORKS

Course Code	OECST724	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To Introduce the core concepts of computer networking.
- 2. To Explore routing protocols and their role in network communication

Modul e No.	Syllabus Description			
1	Introduction to Computer Networks:- Introduction, Network Components, Network Models, ISO/OSI, TCP/IP, Physical Topology,Overview of the Internet, Protocol layering; Physical Layer-Transmission media (copper, fiber, wireless), Datagram Networks, Virtual Circuit networks, Performance.			
2	Data Link Layer:- Error Detection and Correction - Introduction, Hamming Code, CRC, Checksum; Framing-Methods, Flow Control- Noiseless Channels, Noisy Channels; Medium Access Control- Random Access, Controlled Access; Wired LANs - IEEE Standards, Ethernet, IEEE 802.11;	11		
3	Network Layer:- Logical Addressing- IPv4 and IPv6 Addresses; Internet Protocol- IPV4 and IPv6; Unicast Routing Protocols- Distance Vector Routing, Link State Routing Multicast Routing Protocols.	9		
4	Transport Layer:- Transport Layer Protocols- UDP, TCP; Congestion Control- Open Loop Vs Closed Loop Congestion Control, Congestion Control in TCP; Application	8		

Layer - Application Layer Paradigms, Client-server applications, World Wide	
Web and HTTP, FTP. Electronic Mail, DNS; Peer-to-peer paradigm - P2P	
Networks.	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Comprehend the OSI and TCP/IP models, the functioning of different network layers, and the protocol stack used in computer networks.	K2
CO2	Evaluate various transmission media (copper, fiber, wireless), error detection/correction methods, and medium access control mechanisms in both wired and wireless LANs.	K2
СО3	Demonstrate a working knowledge of IPv4 and IPv6 addressing schemes, routing protocols (unicast and multicast), and apply them to network scenarios.	К3
CO4	Summarize UDP and TCP protocols, explain congestion control mechanisms, and understand client-server and peer-to-peer applications like HTTP, FTP, DNS, and P2P networks.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Computer Networks: A Top- Down Approach	Behrouz A Forouzan	McGraw Hill	SIE, 2017						

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Computer Networks, A Systems Approach	L. L. Peterson and B. S. Davie	Morgan Kaufmann	5/e, 2011				
2	TCP/IP Architecture, design, and implementation in Linux	Sameer Seth M. Ajaykumar Venkatesulu	Wiley	1/e, 2008				
3	Computer Networks	Andrew Tanenbaum	Pearson	6/e, 2021				
4	Computer Networking: A Top- Down Approach Featuring Internet	J. F. Kurose and K. W. Ross	Pearson Education	8/e, 2022				

	Video Links (NPTEL, SWAYAM)			
No.	Link ID			
1 https://nptel.ac.in/courses/106/105/106105183/				

MOBILE APPLICATION DEVELOPMENT

(Common to CS/CA/CM/CD/CR/AI/AM/AD)

Course Code	OECST725	CIE Marks	40	
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60	
Credits	3	Exam Hours	2 Hrs. 30 Min.	
Prerequisites (if any)	GXEST204 OR OECST615	Course Type	Theory	

Course Objectives:

- 1. To impart a Comprehensive Mobile Development Knowledge
- 2. To give Proficiency in Flutter and Dart, UI/UX Design Skills
- 3. To present the Industry Practices and Deployment such as app security, testing.

Module No.	Syllabus Description					
1	Fundamentals of Mobile Application Development: Introduction to Mobile Application Development, Overview of Mobile Platforms: iOS and Android, Introduction to Flutter: History, Features, and Benefits, Setting Up the Flutter Development Environment*, Mobile App Architectures (MVC, MVVM, and BLoC), Basics of Dart Programming Language.					
2	User Interface Design and User Experience: Principles of Mobile UI/UX Design, Designing Responsive UIs with Flutter, Using Flutter Widgets: Stateless Widget and Stateful Widget, Layouts in Flutter: Container, Column, Row, Stack, Navigation and Routing in Flutter, Customizing UI with Themes and Styles.	9				
3	Advanced Flutter Development: State Management in Flutter: Provider, Riverpod, and BLoC	9				

	Networking in Flutter: HTTP Requests, JSON Parsing, RESTful APIs Data Persistence: SQLite, Shared Preferences, Hive Asynchronous Programming with Dart: Futures, async/await, and Streams	
4	Industry Practices and App Deployment:Advanced UI Components and Animations, App Security Best Practices,Testing and Debugging Flutter Applications, Publishing Apps to Google PlayStore and Apple App Store, Industry Trends and Future of MobileDevelopment with Flutter	9

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	00
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome						
CO1	Explain the basics of mobile application development and different mobile platforms and the environment setup.	К2					
CO2	Apply principles of effective mobile UI/UX design, develop responsive user interfaces using Flutter widgets.	К3					
CO3	Experiment effectively with state in Flutter applications. networking and data persistence in Flutter apps.	К3					
CO4	Apply security best practices in mobile app development and debug Flutter applications effectively.	К3					

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3								3
CO2	3	3	3	3	3							3
CO3	3	3	3	3	3							3
CO4	3	3	3	3	3							3

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Flutter Cookbook	Simone Alessandria	Packt	2/e, 2023						
2	Flutter for Beginners	Alessandro Biessek	Packt	1/e, 2019						

Reference Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Flutter in Action	Eric Windmill	Manning	1/e, 2019					
2	Flutter and Dart: Up and Running	Deepti Chopra, Roopal Khurana	BPB	1/e, 2023					

	Video Links (NPTEL, SWAYAM)							
No.	Link ID							
1	https://www.youtube.com/watch?v=VPvVD8t02U8							

SEMESTER 8

ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

SOFTWARE ARCHITECTURES

Course Code	PECST861	CIE Marks	40
Teaching Hours/Week (L:T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To develop a comprehensive understanding of software architecture principles and patterns.
- **2.** To provide the ability to design and analyze software architectures.

Module No.	Syllabus Description	Contact Hours				
	Introduction to Software Architecture: Definition and Importance,					
	Architecture in the Life Cycle, Role of the Architect vs. Engineer,					
1	Requirements engineering: Stakeholders, Concerns, and Types of	8				
	Requirements, Use Cases and Tactics.					
	Architectural Patterns and Styles: Architectural Patterns- Overview of					
	Patterns and Styles, Applying Patterns and Choosing a Style. Patterns for	8				
2	Enterprise Applications: Enterprise Applications and Layered Patterns,					
	Concurrency Problems.					
	Components, Contracts, and Service-Oriented Architectures:					
	Component Software- Nature of Components and Reuse, UML and					
3	Components Design by Contract- Contracts, Polymorphism, Inheritance, and	9				
	Delegation Service-Oriented Architectures- Standards, Technologies, and					
	Security.					
	Architecture Evaluation and Description: Describing Architectures and					
4	Viewpoints, Evaluating Architectures. Architectural Description Languages					
	(ADLs)- Overview and Applications.					

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	00
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the foundational concepts of software architecture, including the roles of stakeholders and the importance of requirements engineering.	К2
CO2	Apply architectural patterns and styles to design software systems, particularly in enterprise contexts.	К3
CO3	Understand the principles of component-based software design and the use of contracts in ensuring reliable software systems.	К2
CO4	Apply architectural description techniques to document and evaluate software architectures.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2									3
CO2	3	3	3		2							3
CO3	3	2	2		2							3
CO4	3	3	3		2							3

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	Text Books						
Sl. No Title of the Book Name of the Author/s Name of the Publisher							
1	Software Architecture	A.Bijlsma, B.J.Heeren, E.E.Roubtsova,S. Stuurman	Free Technology Academy	1/e, 2011			
2	Software Architecture 1	Mourad Chabane Oussalah	Wiley	1/e, 2014			

	Reference Books						
Sl. NoTitle of the BookName of the Author/sName of the PublisherEdiand							
1	Head First Software Architecture: A Learner's Guide to Architectural Thinking	Raju Gandhi, Mark Richards, Neal Ford	Oreilly	1/e, 2024			

	Video Links (NPTEL, SWAYAM)				
No.	Link ID				
1	https://www.youtube.com/playlist?list=PL4JxLacgYgqTgS8qQPC17fM-NWMTr5GW6				

Course Code	PEADT862	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

BIO INSPIRED OPTIMIZATION TECHNIQUES

Course Objectives:

1. To provide the knowledge and skills required to design and implement Bio-inspired optimization techniques to problems using evolutionary algorithms like Genetic Algorithms and various Swarm optimization techniques such as ACO, ABC, and PSO.

Module No.	Syllabus Description	Contact Hours
1	Introduction:- Optimization Techniques- Introduction to Optimization Problems, Single and Muti-objective Optimization Classical Techniques, Overview of various Optimization methods, Evolutionary Computing. Genetic Algorithm and Genetic Programming - Basic concept; Bio- inspired Computing (BIC) -Motivation, Overview of BIC, Usage of BIC, Merits and demerits of BIC.	8
2	 Swarm Intelligence: - Biological foundations of Swarm Intelligence, Swarm Intelligence in Optimization. Ant Colonies - Ant Foraging Behaviour, Towards Artificial Ants; Ant Colony Optimization (ACO) – S-ACO, Ant Colony Optimization Metaheuristic, Combinatorial Optimization, ACO Metaheuristic Problem solving using ACO, Local search methods, Scope of ACO algorithms. 	8
3	Swarm Robotics :- Foraging for food, Clustering of objects, Collective Prey retrieval, Scope of Swarm Robotics; Social Adaptation of Knowledge - Particle Swarm, Particle Swarm Optimization (PSO), Particle Swarms for Dynamic Optimization Problems; Artificial Bee Colony (ABC) Optimization biologically inspired algorithms in engineering.	10

	Other Swarm Intelligence algorithms - Fish Swarm, Bacteria foraging, Intelligent Water Drop Algorithms, Applications of biologically inspired algorithms in engineering;	
4	Case Studies:- ACO and PSO for NP-hard problems, Routing problems, Assignment problems, Scheduling problems, Subset problems, Machine Learning Problems, Travelling Salesman Problem.	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one *full question out of two questions*

Part A	Part B	Total
• 2 Questions from each module.	• Each question carries 9 marks.	
• Total of 8 Questions, each carrying 3 marks	• Two questions will be given from each module, out of which 1 question should be answered.	60
	• Each question can have a maximum of 3 subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Describe the fundamentals in bio-inspired optimization techniques which influence computing.	K2			
CO2	Make use of the concepts of Genetic algorithms in various domains.	K3			
CO3	Comprehend the concepts of Swarm Intelligence and collective systems such as ACO, ABC, and PSO.	K2			
CO4	Illustrate the concepts of biologically inspired algorithmic design.	K3			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Introduction to Evolutionary Computing	A. E. Elben, J. E. Smith	Springer	2/e,2015					
2	Bio-Inspired Artificial Intelligence Theories, Methods, and Technologies	Floreano D., Mattiussi C	MIT Press,	1/e,2008					
3	Fundamentals of Natural Computing, Basic Concepts, Algorithms and Applications	Leandro Nunes de Castro	Chapman & Hall/ CRC	1/e, 2007					

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Swarm Intelligence: From Natural to Artificial Systems	Eric Bonabeau, Marco Dorigo, Guy Theraulaz	Oxford University Press	1/e,2000				
2	Ant Colony Optimization	Marco Dorigo and Thomas Stutzle	MIT Press	1/e, 2004				
3	Swarm Intelligence Introduction and Application	Christian Blum and Daniel Merkle	Springer	1/e,2008				

Video Links (NPTEL, SWAYAM)						
Module No. Link ID						
1	https://www.academia.edu/15627526/Nature_inspired_computing_technology_and_applications					
2	https://nptel.ac.in/courses/112103301					
3	http://digimat.in/nptel/courses/video/106106226/L33.html					
4	https://onlinecourses.nptel.ac.in/noc21_me43/preview					

NETWORK SECURITY PROTOCOLS

(Common to CA/AD)

Course Code	PECAT863	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCST501	Course Type	Theory

Course Objectives:

- 1. To explore various network and system security protocols.
- **2.** To teach the authentication protocols, firewalls and security protocols from different layers such as data link, network, transport and application.
- 3. To enable the learners in effective use of security protocols for securing network applications.

Module No.	Syllabus Description	Contact Hours
1	Authentication protocols:- Message Authentication Requirements, Authentication functions, Message authentication codes-Hash functions, Digital signatures, Authentication Protocols – Mutual authentication, One way authentication. Kerberos – Kerberos Version 4, Kerberos Version 5.X.509 Authentication service. Public Key Infrastructure (PKI) – Trust models, Revocation.	8
2	Electronic Mail Security- Pretty Good Privacy (PGP) – Operational Description, Cryptographic keys and key rings, Message format, PGP message generation, PGP message reception, Public key management. S/MIME – Functionality, Messages, Certificate processing, Enhanced security services.	
3	Network Layer Security and Web Security-Internet Protocol Security (IPSec) – Overview, IP security architecture, Authentication Header (AH), Encapsulating Security Payload (ESP), Combining Security Associations, Key management. Internet Key Exchange (IKE) - Phases. Web Security – Web security considerations. Secure Socket Layer and Transport Layer Security (SSL/TLS) – SSL Architecture, SSL protocols	10

	Application Layer Security and System Security-Hypertext Transfer					
	Protocol Secure (HTTPS) -Connection initiation, Closure. Secure Shell (SSH)					
	-Transport layer protocol, User authentication protocol, Connection protocol.					
	Secure Electronic Transaction (SET) - Overview, Features, Participants, Dual					
4	signature, Payment processing.	10				
	Firewalls – Firewall characteristics, Types of Firewalls, Firewall					
	configurations, Encrypted Tunnels, Trusted systems – Data access control, The					
	concept of Trusted Systems, Trojan horse defense.					

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each module.	• Each question carries 9 marks.	
• Total of 8 Questions, each	• Two questions will be given from each module, out of	
carrying 3 marks	which 1 question should be answered.	60
	• Each question can have a maximum of 3 subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain authentication protocols, X.509 authentication service and Public Key Infrastructure (PKI).	K2
CO2	Identify the security mechanism in E-mail security services	K2
CO3	Summarize the network and transport layer security services provided in a secure communication scenario	K2
CO4	Describe application layer security protocols	K2
CO5	Explain the concepts of system security and firewalls	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3
CO5	3	3	3									3

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Cryptography and Network Security –vPrinciples and Practices	William Stallings	Pearson Education	4/e, 2022.				
2	Network Security: Private Communication in a Public World	C.Kaufman,R.Perlman and M.Speciner	Addison-Wesley Professional	3/e,2022.				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Cryptography and Network Security	Behrouz A Forouzan, Debdeep Mukhopadhyay	McGraw Hill Education (India) Private Limited	3/e, 2015				
	Network Security Essentials: Applications and Standards	William Stallings	McGraw Hill	6/e, 2018				
3	Network security : the complete reference.	Bragg, Roberta	McGraw- Hill/Osborne.	1/ e, 2004				

Video Links (NPTEL, SWAYAM)						
Module No.	Link ID					
	https://nptel.ac.in/courses/106/106/106106221/ https://nptel.ac.in/courses/106/105/106105031/ https://nptel.ac.in/courses/111/103/111103020/					

COMPUTATIONAL COMPLEXITY (Common to CS/CM/AD/CB/CN/CU/CR/CI)

Course Code	PECST864	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCST302, PCCST502	Course Type	Theory

Course Objectives:

- To develop an understanding of various computational models, including deterministic and nondeterministic models, Turing machines, and other computational models, and analyze their capabilities and limitations, focusing on how these models influence the classification of problems into complexity classes.
- **2.** To explore key complexity classes such as P, NP, and PSPACE, and apply polynomial-time reductions to prove the NP-completeness of various problems, and also investigate space complexity, polynomial hierarchy, and advanced topics.

Module No.	Syllabus Description				
1	Introduction to Complexity Theory - Basic concepts and motivations, Deterministic and nondeterministic models, Turing machines, and computational models. (Text 2 - Ch 7) Complexity Classes P and NP - Definitions and examples of P and NP, Polynomial-time algorithms, NP-completeness and the Cook-Levin theorem. (Text 2 - Ch 7, 8) Reductions and Completeness - Polynomial-time reductions, NP-complete problems, and their significance, Examples of NP-complete problems (Text 1 - Ch 2)	9			
2	Space Complexity - Space complexity classes: L, NL, PSPACE, Savitch's theorem and NL-completeness, PSPACE-completeness. (Text 2 - Ch 8) Polynomial Hierarchy and Alternation - Definition of the polynomial hierarchy (PH), Complete problems for each level of PH, Relationship between PH and other classes. (Text 1 - Ch 5)	9			

3	Interactive Proofs - Definition and examples of interactive proofs, IP = PSPACE theorem, Zero-knowledge proofs. (Text 1 - Ch 8) Probabilistically Checkable Proofs (PCPs) - Introduction to PCPs, PCP theorem and implications, Applications in hardness of approximation. (Text 1 - Ch 9)	9
4	Circuit Complexity - Boolean circuits and circuit complexity, Circuit lower bounds, Complexity of specific functions. (Text 2 - Ch 9) Quantum Complexity - Basics of quantum computation, Quantum complexity classes: BQP, QMA, Quantum algorithms and their complexity. (Text 3 - Ch 10, 11)	9

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Describe and interpret different computational models, including deterministic and nondeterministic Turing machines.	К2
CO2	Recall and categorize complexity classes such as P, NP, and PSPACE, and explain their fundamental properties.	К2
CO3	Use polynomial-time reductions to demonstrate problem completeness and analyze the computational difficulty of problems.	К3
CO4	Evaluate problems based on their space complexity and apply theories like Savitch's theorem to assess space-bounded algorithms.	K4
CO5	Examine advanced topics in complexity theory, including interactive proofs, PCPs, and quantum complexity, and their implications for computational theory.	K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									2
CO2	3	3	3									2
CO3	3	3	3									2
CO4	3	3	3									2
CO5	3	3	3									2

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Computational Complexity: A Modern Approach	Sanjeev Arora, Boaz Barak	Cambridge University Press	1/e, 2019				
2	Introduction to the Theory of Computation	Michael Sipser	Cengage	3/e, 2014				
3	Quantum Computing: A Gentle Introduction	Eleanor Rieffel, Wolfgang Polak	MIT Press	1/e, 2014				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Randomized Algorithms	Rajeev Motwani and Prabhakar Raghavan	Cambridge University Press	1/e, 2004				
2	Probability and Computing: Randomization and Probabilistic Techniques in Algorithms and Data Analysis	Michael Mitzenmacher and Eli Upfal	Cambridge University Press	3/e, 2017				
3	Introduction to Algorithms	Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein	The MIT Press Cambridge	4/e, 2023				
4	The Probabilistic Method	Noga Alon and Joel H. Spencer	Wiley-Blackwell	4/e, 2016				
5	Approximation Algorithms	Vijay V. Vazirani	Springer	4/e, 2013				
6	Theory of Computation : Classical And Contemporary Approaches	Dexter C Kozen	Springer	6/e, 2006				
7	Computational Complexity: A Conceptual Perspective,	Oded Goldreich	Cambridge University Press	1/e, 2008				

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://onlinecourses.nptel.ac.in/noc21_cs90/preview https://onlinecourses.nptel.ac.in/noc21_cs49/preview						
2	https://onlinecourses.nptel.ac.in/noc21_cs90/preview https://onlinecourses.nptel.ac.in/noc21_cs49/preview						
3	https://onlinecourses.nptel.ac.in/noc21_cs90/preview https://onlinecourses.nptel.ac.in/noc21_cs49/preview						
4	https://onlinecourses.nptel.ac.in/noc21_cs90/preview https://onlinecourses.nptel.ac.in/noc21_cs49/preview https://archive.nptel.ac.in/courses/106/104/106104241/						

SPEECH AND AUDIO PROCESSING

(Common to CS/CA/CM/CD/CR/AD/CC/CG)

Course Code	PECST866	CIE Marks	40
Teaching Hours/Week (L:T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PECST636	Course Type	Theory

Course Objectives:

- 1. To get familiarised with speech processing and audio processing concepts.
- **2.** To equip the student to apply speech processing techniques in finding solutions to day-to-day problems

Module No.	Syllabus Description	Contact Hours
1	Speech Production :- Acoustic theory of speech production; Source/Filter model - Pitch, Formant; Spectrogram- Wide and narrow band spectrogram; Discrete model for speech production; Short-Time Speech Analysis; Windowing; STFT; Time domain parameters (Short time energy, short time zero crossing Rate, ACF); Frequency domain parameters - Filter bank analysis; STFT Analysis.	9
2	Mel-frequency cepstral coefficient (MFCC)- Computation; Pitch Estimation ACF/AMDF approaches; Cepstral analysis - Pitch and Formant estimation using cepstral analysis; <i>LPC Analysis</i> - LPC model; Auto correlation method - Levinson Durbin Algorithm	9
3	Speech Enhancement :- Spectral subtraction and Filtering, Harmonic filtering, Parametric resynthesis; Speech coding - fundamentals, class of coders : Time domain/spectral domain/vocoders, Sub band coding, adaptive transform coding, phase vocoder; Speaker Recognition :- Speaker verification and speaker identification, log-likelihood; Language identification - Implicit and explicit models; Machine learning models in Speaker Recognition.	9

	Signal Processing models of audio perception - Basic anatomy of hearing	
	System, Basilar membrane behaviour; Sound perception - Auditory Filter	
4	Banks, Critical Band Structure, Absolute Threshold of Hearing; Masking -	9
	Simultaneous Masking, Temporal Masking; Models of speech perception.	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	00
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	
CO1	To recall various steps in the speech production process	K2
CO2	To summarise various speech processing approaches	К2
CO3	To develop speech-processing applications in various domains	К3
CO4	To analyse the speech processing model for audio perception	K4

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2		2	2					3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3	2			2					3

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Speech Communications: Human & Machine	Douglas O'Shaughnessy	IEEE Press	2/e, 1999				
2	Discrete-Time Speech Signal Processing: Principles and Practice	Thomas F. Quatieri	Prentice Hall	1/e, 2001				
3	Fundamentals of Speech Recognition	Lawrence Rabiner, Biing- Hwang Juang, B. Yegnanarayana	Pearson	1/e, 2008				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Theory and Application of Digital Processing of Speech Signals	Rabiner and Schafer	Prentice Hall	1/e, 2010				
2	Speech and Audio Signal Processing: Processing and Perception Speech and Music	Nelson Morgan and Ben Gold	John Wiley & Sons	2/e, 2011				

	Video Links (NPTEL, SWAYAM)				
No.	Link ID				
1	https://youtu.be/Xjzm7S_kBU?si=j11bk3F7gocYjhfg				

STORAGE SYSTEMS

(Common to CS/CM/CR/CD/AM/AD)

Course Code	PECST867	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To provide a comprehensive understanding of storage technologies and architectures.
- 2. To empower students to design and implement effective storage solutions.

Module No.	Syllabus Description					
1	Storage technologies:-Computer storage technologies-Magnetic bubble memories, ChargedCoupled Devices - CCDs, Micro-Electro-Mechanical Systems- MEMS, Flash memories, Processing In Memory - PIM, Optical storage -Data deduplication in storage systems.Storage Arrays- Architectural Principles, Replication, Local SnapshotRedundant Arrays of Independent Disks (RAID) - RAID0,RAID2,RAID3,RAID4, RAID5, RAID6, Hybrid RAID.					
2	Data Storage Networking:- Fibre Channel SAN- FC SAN Components, SAN Topologies, iSCSI SAN- iSCSI names, Sessions, iSNS, Network Attached Storage - NAS Protocols, NAS Arrays, NAS Performance Object Storage - Objects and Object IDs, metadata, API Access	9				
3	Business Continuity, Backup and Recovery:-Replication-SynchronousReplication,AsynchronousReplicationApplication,LayerReplication,LogicalVolumeManager–BasedReplication,BackupMethods-HotBackups,OfflineBackups,LAN-BasedBackups,LAN-FreeBackups (SAN Based), ServerlessBackups, NDMP,Backup Types-FullBackups,IncrementalBackups,DifferentialBackups ,SyntheticFullBackups,Application-AwareBackupsServerlessServerle	9				

	Storage Management:-	
	Capacity Management- Capacity Reporting, Thin Provisioning	
	Considerations, Deduplication and Compression, Quotas and Archiving,	
4	Showback and Chargeback, Performance Management- Latency/Response	9
	Time, IOPS, MBps and Transfer Rate, Factors Affecting Storage	
	Performance	
	Management Protocols and Interfaces.	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. 	60
(8x3 =24 marks)	1	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Describe emerging storage technologies.	K2			
CO2	Compare and contrast different storage networking technologies.	K2			
CO3	Understand the importance of business continuity.	K2			
CO4	Develop a comprehensive backup and recovery strategy	K3			
CO5	Utilize management tools and best practices to monitor, optimize, and secure storage resources, ensuring optimal performance and data integrity.	К3			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2									3
CO2	3	3	2									3
CO3	3	3	3									3
CO4	3	3	3									3
CO5	3	3	3									3

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Data Storage Networking	Nigel Poulton	WILEY	2/e, 2015				
2	Computer Storage Fundamentals	Susanta Dutta	BPB Publication	1/e, 2018				

	Reference Books							
Sl. NoTitle of the BookName of the Author/sName of the PublisherEdition and Yea								
1	Storage Systems : Organization, Performance, Coding, Reliability, and Their Data Processing	Alexander Thomasian	Morgan Kaufmann	1/e, 2021				
2	Information Storage and Management	Somasundaram Gnanasundaram Alok Shrivastava	Wiley	2/e, 2012				

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	1 https://archive.nptel.ac.in/courses/106/108/106108058/					

PROMPT ENGINEERING

(Common to CS/CM/CR/CD/AD/AM)

Course Code	PECST868	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To develop students' practical skills in applying prompt engineering techniques to real-world applications, while fostering an awareness of the ethical considerations and challenges in the field
- **2.** To give an understanding of contextual cues to mitigating biases with techniques for seamless interaction with AI systems.

Module No.	Syllabus Description	Contact Hours		
	Introduction to Prompt Engineering and Language Models :-			
	Fundamentals of Natural Language Processing (NLP) - Overview of Language			
	Models: From Rule-Based Systems to Transformer Architectures (e.g., GPT,			
	BERT) - Understanding Prompts: Definition, Importance, and Applications -			
1	Introduction to Prompt Engineering: Techniques and Use Cases - Ethical	9		
	Considerations in Prompt Engineering			
	Handson : Explore various language models using platforms like OpenAI,			
	Hugging Face, or Google Colab; Experimenting with basic prompts to			
	understand the impact of phrasing and context on model outputs.			
	Techniques and Strategies in Prompt Engineering :-			
	Designing Effective Prompts - Best Practices and Common Pitfalls; Prompt			
	Tuning and Fine-Tuning Language Model; Using Zero-Shot, Few-Shot, and			
	Multi-Shot Learning in Prompts; Exploring the Role of Context, Repetition,			
2	and Specificity in Prompt Responses; Advanced Prompt Engineering	9		
	Techniques: Prompt Chaining, Iterative Prompting.			
	Handson : Crafting and optimizing prompts for specific tasks (e.g., text			
	generation, summarization, Q&A); Using prompt engineering to fine-tune pre-			
	trained models on specific datasets or tasks.			

	Applications of Prompt Engineering :-		
	Prompt Engineering in Chatbots and Conversational AI; Content Generation:		
	Creative Writing, Code Generation, and Data Augmentation; Prompt		
	Engineering for Sentiment Analysis, Classification, and Translation;		
	Integration of Prompt Engineering with Other AI Technologies (e.g.,	0	
3	Computer Vision, Data Science); Real-World Case Studies and Industry	9	
	Applications		
	Handson : Developing a simple chatbot using prompt engineering techniques,		
	Case study analysis and reproduction of real-world prompt engineering		
	applications		
	Challenges, Future Trends, and Research in Prompt Engineering :-		
	Challenges in Prompt Engineering: Ambiguity, Bias, and Misinterpretation;		
	Evaluating and Improving Prompt Performance: Metrics and Benchmarks;		
4	Future Trends: Emerging Techniques and the Evolution of Language Models;	9	
	Handson: Working on a capstone project to solve a real-world problem using		
	prompt engineering		

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE) In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the core principles of NLP, language models, and the role of prompts in influencing AI behavior.	K2
CO2	Demonstrate the ability to design and fine-tune prompts for specific tasks, optimizing language models for desired outputs	К3
CO3	Apply prompt engineering techniques to develop functional AI applications, such as chatbots, content generation tools, and automated systems.	К3
CO4	Compare the ethical implications of prompt engineering, addressing challenges such as bias, ambiguity, and misuse, and propose solutions to mitigate these issues.	К3
CO5	Apply prompt engineering techniques to a variety of assigned tasks	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3
CO5	3	3	3									3

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Speech and Language Processing	Daniel Jurafsky and James H. Martin	Pearson	2/e, 2013						
2	Unlocking the Secrets of Prompt Engineering	Gilbert Mizrahi	Packt	1/e, 2023						
3	Prompt Engineering	Ian Khan	Wiley	1/e, 2024						

Reference Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Natural Language Processing with Python	Steven Bird, Ewan Klein, and Edward Loper	Oreilly	1/e, 2009						
2	Transformers for Natural Language Processing	Denis Rothman	Packt	1/e, 2021						

NEXT GENERATION INTERACTION DESIGN

(Common to CS/CR/CM/CA/CD/AM/AD/CN/CC/CI/CG)

Course Code	PECST865	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None		

Course Objectives:

- **1.** To provide a comprehensive understanding of the principles of interaction design and their application in augmented reality (AR) and virtual reality (VR) environments.
- **2.** To equip learners with practical skills in developing, prototyping, and evaluating AR/VR applications, focusing on user-centered design and advanced interaction techniques.

Module No.	Syllabus Description	Contact Hours					
	Introduction to Interaction Design and AR/VR :- Fundamentals of						
	Interaction Design - Principles of interaction design, Human-computer						
	interaction (HCI) basics, User experience (UX) design principles;						
1	Introduction to AR and VR - Overview of AR and VR technologies (Key	10					
	differences and Application), Overview of AR/VR hardware (headsets,						
	controllers, sensors), Software tools and platforms for AR/VR development.						
	User-Centered Design and Prototyping :-						
	Understanding User Needs and Context - User research methods, Personas						
	and user journey mapping, Contextual inquiry for AR/VR, Designing for						
2	AR/VR Environments, Spatial design principles, Immersion and presence in						
	AR/VR, User interface (UI) design for AR/VR; Prototyping and Testing -						
	Rapid prototyping technique, Usability testing methods, Iterative design and						
	feedback loops.						
	Advanced Interaction Techniques :-						
	Gesture - Designing for gesture-based interaction, Implementing gesture						
	controls in AR/VR applications; Voice - Voice recognition technologies,						
3	Integrating voice commands in AR/VR; Haptic Feedback and Sensory	13					
	Augmentation - Understanding haptic feedback and tactile interactions; Eye						
	Gaze - Designing and integrating Eye Gaze in VR; Spatial Audio;						

		Microinteraction; Motion capture and tracking technologies; Natural Language Interaction and conversational interfaces; Type of IoT sensors	
		and uses.	
		Implementation, Evaluation, and Future Trends :-	
		Developing AR/VR Projects - Project planning and management,	
		Collaborative design and development, Case studies of successful AR/VR	
		projects; Evaluating AR/VR Experiences - Evaluation methods and metrics,	
	4	Analyzing user feedback, Refining and improving AR/VR applications;	11
		Future Trends and Ethical Considerations- Emerging technologies in	
		AR/VR, Ethical implications of AR/VR, Future directions in interaction	
		design for AR/VR.	
1			

Continuous Internal Evaluation Marks (CIE):

Attendance	Internal Ex	Evaluate	Analyse	Total	
5	15	10	10	40	

Criteria for Evaluation(Evaluate and Analyse): 20 marks

- The students must be directed to measure the quality of the interfaces / GUI based on various techniques such as user testing.
- The students may be assessed based on their ability to analyze various performance of the interfaces /GUIs.

End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. Each question carries 9 marks. (4x9 = 36 marks)	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Apply fundamental interaction design principles and human-computer interaction (HCI) concepts to create effective and intuitive user experiences in AR/VR applications.	К3
CO2	Demonstrate proficiency in using AR/VR hardware and software tools for the development and prototyping of immersive environments.	К3
CO3	Conduct user research and apply user-centered design methodologies to tailor AR/VR experiences that meet specific user needs and contexts.	К4
CO4	Implement advanced interaction techniques such as gesture controls, voice commands, haptic feedback, and eye gaze in AR/VR applications to enhance user engagement and immersion.	К3
CO5	Evaluate AR/VR projects, utilizing appropriate evaluation methods and metrics, and propose improvements based on user feedback and emerging trends in the field.	К5

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3								3
CO2	3	3	3	3	3							3
CO3	3	3	3	3	3							3
CO4	3	3	3	3	3							3
CO5	3	3	3	3								3

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Augmented Reality - Theory, Design and Development	Chetankumar G Shetty	McGraw Hill	1/e, 2023		
2	Virtual Reality and Augmented Reality: Myths and Realities	Ralf Doerner, Wolfgang Broll, Paul Grimm, and Bernhard Jung	Wiley	1/e, 2018		
3	Augmented Reality: Principles and Practice	Pearson	1/e, 2016			
4	Human–Computer Interaction	Alan Dix, Janet Finlay, Gregory D. Abowd, Russell Beale	Pearson	3/e, 2004		
5	Evaluating User Experience in Games: Concepts and Methods	Regina Bernhaupt	Springer	1/e, 2010		
6	Measuring the User Experience: Collecting, Analyzing, and Presenting Usability Metrics	Bill Albert, Tom Tullis	Morgan Kaufman	2/e, 2013		
7	The Fourth Transformation: How Augmented Reality & Artificial Intelligence Will Change Everything	Robert Scoble and Shel Israel	Patrick Brewster	1/e, 2016		
8	Augmented Reality and Virtual Reality: The Power of AR and VR for Business	M. Claudia tom Dieck and Timothy Jung	Springer	1/e, 2019		

	Video Links (NPTEL, SWAYAM)				
No.	No. Link ID				
1	Interaction Design https://archive.nptel.ac.in/courses/107/103/107103083/				
2	Virtual Reality https://archive.nptel.ac.in/courses/106/106/106106138/				
3	Augmented Reality https://www.youtube.com/watch?v=WzfDo2Wpxks				

INTRODUCTION TO ALGORITHMS

(Common to CS/CA/CM/CD/CR/AD/AM)

Course Code	OECST831	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To give proficiency in analysing algorithm efficiency and solve a variety of computational problems, including sorting, graph algorithms.
- 2. To provide an understanding in algorithmic problem-solving techniques, including Divide and Conquer, Greedy Strategy, Dynamic Programming, Backtracking, and Branch & Bound algorithms.

Module No.	Syllabus Description			
1	Introduction to Algorithm Analysis Time and Space Complexity- Asymptotic notation, Elementary operations and Computation of Time Complexity-Best, worst and Average Case Complexities- Complexity Calculation of simple algorithms Recurrence Equations: Solution of Recurrence Equations – Iteration Method and Recursion Tree Methods	9		
2	Trees - Binary Trees – level and height of the tree, complete-binary tree representation using array, tree traversals (Recursive and non-recursive), applications. Binary search tree – creation, insertion and deletion and search operations, applications; Graphs – representation of graphs, BFS and DFS (analysis not required), Topological Sorting.	9		
	Divide and Conquer - Control Abstraction, Finding Maximum and Minimum, Costs associated element comparisons and index comparisons, Binary Search, Quick Sort, Merge Sort - Refinements; Greedy Strategy - Control Abstraction, Fractional Knapsack Problem, Minimum Cost Spanning Trees – PRIM's Algorithm, Kruskal's Algorithm, Single Source Shortest Path Algorithm - Dijkstra's Algorithm.	9		
4	Dynamic Programming - The Control Abstraction- The Optimality Principle	9		

- Matrix Chain Multiplication, Analysis; All Pairs Shortest Path Algorithm -	
Floyd-Warshall Algorithm; The Control Abstraction of Backtracking - The	
N-Queens Problem. Branch and Bound Algorithm for Travelling Salesman	
Problem.	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome		
CO1	Identify algorithm efficiency using asymptotic notation, compute complexities, and solve recurrence equations	К3	
CO2	Use binary trees and search trees, and apply graph representations, BFS, DFS, and topological sorting	К3	
CO3	Use divide and conquer to solve problems like finding maximum/minimum, binary search, quick sort, and merge sort	К3	
CO4	Apply greedy strategies to solve the fractional knapsack problem, minimum cost spanning trees using Prim's and Kruskal's algorithms, and shortest paths with Dijkstra's algorithm.	K3	
CO5	Understand the concepts of Dynamic Programming, Backtracking and Branch & Bound	K2	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

			8									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									1
CO2	2	3	2	2								2
CO3	3	3	3	2								2
CO4	2	2										2
CO5	2	3	2									2

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Introduction to Algorithms	T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein	Prentice-Hall India	4/e, 2022			
2	Fundamentals of Computer Algorithms	Ellis Horowitz, SartajSahni, Sanguthevar Rajasekaran	Universities Press	2/e, 2008			

	Reference Books					
Sl. No	Title of the Book	Title of the BookName of the Author/s		Edition and Year		
1	Algorithm Design	Jon Kleinberg, Eva Tardos	Pearson	1/e, 2005		
2	Algorithms	Robert Sedgewick, Kevin Wayne	Pearson	4/e, 2011		
3	The Algorithm Design Manual	Steven S. Skiena	Springer	2/e, 2008		

	Video Links (NPTEL, SWAYAM)				
No.	No. Link ID				
1	1 https://archive.nptel.ac.in/courses/106/105/106105164/				

WEB PROGRAMMING

Course Code	OECST832	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	GXEST203	Course Type	Theory

Course Objectives:

- 1. To equip students with the knowledge and skills required to create, style, and script web pages using HTML5, CSS, JavaScript, and related technologies.
- 2. To provide hands-on experience with modern web development tools and frameworks such as React, Node.js, JQuery, and databases, enabling students to design and build dynamic, responsive, and interactive web applications.

Module No.	Syllabus Description	Contact Hours	
	Creating Web Page using HTML5 - Introduction, First HTML5 example,		
	Headings, Linking, Images, Special Characters and Horizontal Rules, Lists,		
	Tables, Forms, Internal Linking, meta Elements, HTML5 Form input Types,		
	Input and datalist Elements and autocomplete Attribute, Page-Structure		
	Elements; Styling Web Page using CSS - Introduction, Inline Styles,		
1	Embedded Style Sheets, Linking External Style Sheets, Positioning Elements:,	9	
	Absolute Positioning, z-index, Positioning Elements: Relative Positioning, span,		
	Backgrounds, Element Dimensions, Box Model and Text Flow, Media Types		
	and Media Queries, Drop-Down Menus; Extensible Markup Language -		
	Introduction, XML Basics, Structuring Data, XML Namespaces, Document		
	Type Definitions (DTDs), XML Vocabularies		
	Scripting language - Client-Side Scripting, Data Types, Conditionals, Loops,		
	Arrays, Objects, Function Declarations vs. Function Expressions, Nested		
	Functions, The Document Object Model (DOM) - Nodes and NodeLists,		
2	Document Object, Selection Methods, Element Node Object, Event Types	9	
	Asynchronous JavaScript and XML - AJAX : Making Asynchronous		
	Requests , Complete Control over AJAX , Cross-Origin Resource Sharing		

	JavaScript library - jQuery - jQuery Foundations - Including jQuery, jQuery	
	Selectors, Common Element Manipulations in jQuery, Event Handling in	
	jQuery	
	JavaScript runtime environment : Node.js - The Architecture of Node.js,	
	Working with Node.js, Adding Express to Node.js; Server-side programming	
	language : PHP - What Is Server-Side Development? Quick tour of PHP,	
	Program Control , Functions , Arrays , Classes and Objects in PHP , Object-	
3	Oriented Design ; Rendering HTML : React - ReactJS Foundations : The	9
	Philosophy of React, What is a component? Built- in components, User- defined	
	components - Types of components, Function Components, Differences	
	between Function and Class Components	
	SPA – Basics, Angular JS; Working with databases - Databases and Web	
	Development, SQL, Database APIs, Accessing MySQL in PHP; Web	
	Application Design - Real World Web Software Design, Principle of Layering,	
4	Software Design Patterns in the Web Context, Testing; Web services -	9
	Overview of Web Services - SOAP Services, REST Services, An Example Web	
	Service, Web server - hosting options	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Develop structured web pages with HTML5 and style them using CSS techniques, including positioning, media queries, and the box model.	К3
CO2	Write client-side scripts using JavaScript and utilize jQuery for DOM manipulation, event handling, and AJAX requests to create responsive and interactive user interfaces.	К3
CO3	Build and deploy server-side applications using Node.js, Express, and PHP, and integrate databases using SQL to store and retrieve data for dynamic content generation.	К3
CO4	Utilize React for building component-based single-page applications (SPAs), understanding the fundamental principles of component architecture, and leveraging AngularJS for web application development.	K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3		3							3
CO2	3	3	3		3							3
CO3	3	3	3		3							3
CO4	3	3	3		3							3

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Fundamentals of Web Development	Randy Connolly, Ricardo Hoar	Pearson	1/e, 2017			
2	Building User Interfaces with ReactJS - An Approachable Guide	Chris Minnick	Wiley	1/e, 2022			
3	Internet & World Wide Web - How to Program	Paul J. Deitel, Harvey M. Deitel, Abbey Deitel	Pearson	1/e, 2011			
4	SPA Design and Architecture: Understanding Single Page Web Applications	Emmit Scott	Manning Publications	1/e, 2015			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	A Hand Book On Web Development : From Basics of HTML to JavaScript and PHP	Pritma Jashnani	Notion press	1/e, 2022			
2	Advanced Web Development with React	Mohan Mehul	BPB	1/e, 2020			
3	JavaScript Frameworks for Modern Web Development	Tim Ambler, Sufyan bin Uzayr, Nicholas Cloud	Apress	1/e, 2019			

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://archive.nptel.ac.in/courses/106/106/106106222/				
2	https://archive.nptel.ac.in/courses/106/106/106106156/				

SOFTWARE TESTING

Course Code	OECST833	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To Cultivate proficiency in software testing methodologies and techniques.
- 2. To Foster expertise in software testing tools and technologies.

Module Contact **Syllabus Description** No. Hours Introduction to Software Testing & Automation:-Introduction to Software Testing - Concepts, importance of testing, software quality, and real-world failures (e.g., Ariane 5, Therac 25); Software Testing Processes - Levels of thinking in testing; Testing Terminologies - Verification, validation, fault, error, bug, test cases, and coverage criteria; Types of Testing -Unit, Integration, System, Acceptance, Performance (stress, usability, regression), 1 8 and Security Testing; Industry Trends - AI in test case automation, Introduction to GenAI in testing; Testing Methods - Black-Box, White-Box, and Grey-Box Testing; Automation in Testing - Introduction to automation tools (e.g., Selenium, Cypress, JUnit); Case Study- Automation of Unit Testing and Mutation Testing using JUnit. Unit Testing, Mutation Testing & AI-Driven Automation:-Unit Testing- Static and Dynamic Unit Testing, control flow testing, data flow testing, domain testing; Mutation Testing- Mutation operators, mutants, mutation score, and modern mutation testing tools (e.g., Muclipse); JUnit Framework -Automation of unit testing, frameworks for testing in real-world projects; AI in 2 8 Testing - GenAI for test case generation and optimization, impact on automation; Industry Tools - Application of AI-driven testing tools in automation and predictive testing; Case Study - Mutation testing using JUnit, AI-enhanced test case automation.

	Advanced White Box Testing & Security Testing:-	
	Graph Coverage Criteria - Node, edge, and path coverage; prime path and round	
	trip coverage; Data Flow Criteria - du paths, du pairs, subsumption relationships;	
	Graph Coverage for Code - Control flow graphs (CFGs) for complex structures	
3	(e.g., loops, exceptions); Graph Coverage for Design Elements - Call graphs, class	10
	inheritance testing, and coupling data-flow pairs; Security Testing -	
	Fundamentals, tools (OWASP, Burp Suite), and their role in protecting modern	
	applications; Case Study - Application of graph based testing and security testing	
	using industry standard tools.	
	Black Box Testing, Grey Box Testing, and Responsive Testing:-	
	Black Box Testing - Input space partitioning, domain testing, functional testing	
	(equivalence class partitioning, boundary value analysis, decision tables, random	
	testing); Grey Box Testing - Introduction, advantages, and methodologies (matrix	
	testing, regression testing, orthogonal array testing); Performance Testing -	
4	Network latency testing, browser compatibility, responsive testing across multiple	10
	devices (e.g., BrowserStack, LambdaTest); Introduction to PEX - Symbolic	
	execution, parameterized unit testing, symbolic execution trees, and their	
	application; GenAI in Testing - Advanced use cases for predictive and responsive	
	testing across devices and environments; Case Study- Implementation of black-	
	box, grey-box, and responsive testing using PEX and AI-driven tools.	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Tota l
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
C01	Demonstrate the ability to apply a range of software testing techniques, including unit testing using JUnit and automation tools.	К2
CO2	Illustrate using appropriate tools the mutation testing method for a given piece of code to identify hidden defects that can't be detected using other testing methods.	К3
CO3	Explain and apply graph coverage criteria in terms of control flow and data flow graphs to improve code quality.	К2
CO4	Demonstrate the importance of black-box approaches in terms of Domain and Functional Testing	К3
CO5	Illustrate the importance of security, compatibility, and performance testing across devices.	К3
CO6	Use advanced tools like PEX to perform symbolic execution and optimize test case generation and also leverage AI tools for automated test case prediction and symbolic execution with PEX.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

corronapping rubic (mapping of course outcomes to rrogram outcomes)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3	3	3							3
CO3	3	3	3									3
CO4	3	3	3	3								3
CO5	3	3	3		3							3
CO6	3	3	3	3	3							3
	1 01	1 /7			(3 F 1)		~ 1	. 1 /77		NG		

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Introduction to Software Testing.	Paul Ammann, Jeff Offutt	Cambridge University Press	2/e, 2016				
2	Software Testing and Quality Assurance: Theory and Practice	Kshirasagar Naik, Priyadarshi Tripathy	Wiley	1/e, 2008				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Software Testing	Ron Patten	Pearson	2/e, 2005				
2	Software Testing: A Craftsman's Approach	Paul C. Jorgensen	CRC Press	4/e, 2017				
3	Foundations of Software Testing	Dorothy Graham, Rex Black, Erik van Veenendaal	Cengage	4/e, 2021				
4	The Art of Software Testing	Glenford J. Myers, Tom Badgett, Corey Sandler	Wiley	3/e, 2011				

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://archive.nptel.ac.in/courses/106/101/106101163/				
2	https://archive.nptel.ac.in/courses/106/101/106101163/				
3	https://archive.nptel.ac.in/courses/106/101/106101163/				
4	https://archive.nptel.ac.in/courses/106/101/106101163/				

INTERNET OF THINGS

Course Code	OECST834	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	NA	Course Type	Theory

Course Objectives:

- **1.** To give an understanding in the Internet of Things, including the components, tools, and analysis through its fundamentals and real-world applications.
- **2.** To enable the students to develop IoT solutions including the softwares and programming of Raspberry Pi hardware.

Module No.	Syllabus Description	Contact Hours
1	Introduction to IoT - Physical Design of IoT, Logical Design of IoT, IoT levels and Deployment templates, Domain Specific IoT- Home automation, Energy, Agriculture, Health and lifestyle.	9
2	IoT and M2M-M2M, Difference between IoT and M2M, Software Defined Networking, Network Function virtualization, Need for IoT System Management, Simple Network Management Protocol (SNMP), NETCONF, YANG; LPWAN - LPWAN applications, LPWAN technologies, Cellular (3GPP) and Non 3GPP standards, Comparison of various protocols like Sigfox, LoRA, LoRAWAN, Weightless, NB-IoT, LTE-M.	9
3	Developing IoT - IoT design methodology, Case study on IoT system for weather monitoring, Motivations for using python, IoT-system Logical design using python, Python Packages of Interest for IoT - JSON, XML, HTTPlib & URLLib, SMTPLib	9
4	Programming Raspberry Pi with Python-Controlling LED with Raspberry Pi, Interfacing an LED and switch with Raspberry Pi, Other IoT devices- PcDino, Beagle bone Black, Cubieboard, Data Analytics for IoT	9

Continuous Int	(CIE: 40 marks, ESE: 60 marks) Continuous Internal Evaluation Marks (CIE):						
Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total			
5	15	10	10	40			

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each module. Total of 8 Questions, each	Each question carries 9 marks. Two questions will be given from each module, out of	
carrying 3 marks (8x3 =24 marks)	which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks)	60

Course Outcomes (COs)

At the end of the course, students should be able to:

	Course Outcome	Bloom's Knowledg e Level (KL)
CO1	Understand domain-specific applications and apply the principles of IoT, including physical and logical design and deployment templates	К2
CO2	Use the principles of IoT and M2M, their differences, and key concepts like SDN, NFV, and essential management protocols.	К3
CO3	Develop and apply IoT design methodology, utilize Python for logical system design, and leverage key Python packages through practical case studies.	К3
CO4	Experiment using Raspberry Pi with Python to control LEDs and switches, interface with other IoT devices.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3							2		3
CO2	3	3	3							2		3
CO3	3	3	3	2						2		3
CO4	3	3	3	2						2		3

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Internet of Things - a Hands On Approach.	Arshdeep Bahga, Vijay Madisetti	Universities Press	1/e, 2016				

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Internet of Things : Architecture and Design Principles	Rajkamal	McGraw Hill	2/e, 2022					
2	The Internet of Things –Key applications and Protocols	Olivier Hersent, David Boswarthick, Omar Elloumi	Wiley	1/e, 2012					
3	IoT fundamentals : Networking technologies, Protocols and use cases for the Internet of things	David Hanes Gonzalo. Salgueiro, Grossetete, Robert Barton	Cisco Press	1/e, 2017					

	Video Links (NPTEL, SWAYAM)					
No.	No. Link ID					
1	https://archive.nptel.ac.in/courses/106/105/106105166/					
2	https://archive.nptel.ac.in/courses/108/108/108108179/					

COMPUTER GRAPHICS

Course Code	OECST835	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objective:

1. To provide strong technological concepts in computer graphics including the threedimensional environment representation in a computer, transformation of 2D/3D objects and basic mathematical techniques and algorithms used to build applications.

Module No.	Syllabus Description	Contact Hours
1	 Basics of Computer graphics - Basics of Computer Graphics and its applications. Video Display devices - LED, OLED, LCD, PDP and FED and reflective displays. Random and Raster scan displays and systems. Line and Circle drawing Algorithms - Line drawing algorithms-Bresenham's algorithm, Liang-Barsky Algorithm, Circle drawing algorithms - Midpoint Circle generation algorithm, Bresenham's Circle drawing algorithm. 	10
2	 Geometric transformations - 2D and 3D basic transformations - Translation, Rotation, Scaling, Reflection and Shearing, Matrix representations and homogeneous coordinates. Filled Area Primitives - Scan line polygon filling, Boundary filling and flood filling. 	10
3	Transformations and Clipping Algorithms - Window to viewport transformation. Cohen Sutherland and Midpoint subdivision line clipping algorithms, Sutherland Hodgeman and Weiler Atherton Polygon clipping algorithms.	8
4	Three dimensional graphics - Three dimensional viewing pipeline. Projections- Parallel and Perspective projections. Visible surface detection algorithms- Back face detection, Depth buffer algorithm, Scan line algorithm, A buffer algorithm.	8

Continuous Internal Evaluation Marks (CIE):

Attendance Assignmen Microproje		Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the principles of computer graphics and displays	K2
CO2	Illustrate line drawing, circle drawing and polygon filling algorithms	K3
CO3	Illustrate 2D and 3D basic transformations and matrix representation	K3
CO4	Demonstrate different clipping algorithms and 3D viewing pipeline.	K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3	3								3
CO3	3	3	3	3								3
CO4	3	3	3	3								3

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Computer Graphics : Algorithms and Implementations	D. P. Mukherjee, Debasish Jana	РНІ	1/e, 2010						
2	Computer Graphics with OpenGL	Donald Hearn, M. Pauline Baker and Warren Carithers	PHI	4/e, 2013						

	Reference Books							
Sl. No	Title of the Book Name of the Author/s		o Title of the Book Name of the Author/s		Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year
1	Introduction to Flat Panel Displays	Jiun-Haw Lee, I-Chun Cheng, Hong Hua, Shin- Tson Wu	Wiley	1/e, 2020				
2	Computer Graphics and Multimedia	ITL ESL	Pearson	1/e, 2013				
3	Computer Graphics	Zhigang Xiang and Roy Plastock	McGraw Hill	2/e, 2000				
4	Principles of Interactive Computer Graphics	William M. Newman and Robert F. Sproull	McGraw Hill	1/e, 2001				
5	Procedural Elements for Computer Graphics	David F. Rogers	McGraw Hill	1/e, 2017				
6	Computer Graphics	Donald D Hearn, M Pauline Baker	Pearson	2/e, 2002				

Video Links (NPTEL, SWAYAM)	
No.	Link ID
1.	Computer Graphics By Prof. Samit Bhattacharya at IIT Guwahati https://onlinecourses.nptel.ac.in/noc20_cs90/preview