GROUP C MODEL QUESTION PAPER

SEMESTER 1

MODEL QUESTION PAPER

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B. TECH DEGREE EXAMINATION, MONTH AND YEAR

Course Code: GYMAT101

Course Name: MATHEMATICS FOR ELECTRICAL SCIENCE AND PHYSICAL SCIENCE - 1

Ma	Max. Marks: 60 Duration: 2 hours 30 minutes				
		Answer all questions. Each question carries 3 marks	CO	0	Marks
1		Find the rank of the matrix $\begin{bmatrix} -1 & 0 & 6 \\ 3 & 6 & 1 \\ -5 & 1 & 3 \end{bmatrix}$	C	01	(3)
2		If 2 is an Eigen value of the matrix $\begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 4 \end{bmatrix}$ then find the overlap values without using its characteristic equation	ther Eigen	01	(3)
3		Solve $y'' + y' - 6y = 0$	C	02	(3)
4		Find the Wronskian corresponding to the solution of $y'' + 3y' + 2y'$	2y = 0. CO	02	(3)
5		Find $L(sin^2 3t)$	CO	03	(3)
6		Find $L(e^{-2t}\cosh 4t)$	CO	03	(3)
7		Find the Taylor series for $f(x) = \frac{1}{x}$ about $x = -1$	C	04	(3)
8		Find the Fourier coefficient b_n for $f(x) = x$ in $-\pi < x < \pi$	CO	04	(3)
	1	PART B		I	
		Answer any one full question from each module. Each question	carries 9 mark	(S	
	I	Module 1			
9	a)	Solve the system of equations 2x - y + z = 7, $3x + y - 5z = 13$, $x + y + z = 5$	C	01	(4)
	b)	Find the Eigen values and Eigen vectors of the followin $\begin{bmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{bmatrix}$	ng matrix CO	01	(5)
10	a)	Find the values of λ, μ for which the system of equations $2x + 3y + 5z = 9, 7x + 3y - 2z = 8, 2x + 3y + \lambda z =$ has (i) no solution ((ii) infinite number of solutions (iii) unique so	$= \mu$	01	(4)

	b)	Diagonalise $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$	CO1	(5)		
		Module 2				
11	a)	Solve $y'' + y = secx$ by the method of variation of parameters.	CO2	(5)		
	b)	Solve $(D^2 - 16I)y = 3.2e^{4x} + 15e^x$	CO2	(4)		
12	a)	Solve $(D^2 - 16)y = 15e^x + x^2$	CO2	(6)		
	b)	Solve $y^{\prime\prime\prime} + y^{\prime} = 0$	CO2	(3)		
		Module 3				
13	a)	Solve by using Laplace transform, $y'' + 4y' + 3y = e^{-t}, y(0) = 1, y'(0) = 1$	CO3	(5)		
	b)	Find $L^{-1}\left(\frac{3s+2}{(s-1)(s^2+1)}\right)$	CO3	(4)		
14	a)	Using convolution theorem, find the inverse Laplace transform of $\frac{18s}{(s^2+36)^2}$	CO3	(5)		
	b)	Find $L^{-1}\left(\frac{s+1}{s^2+s+1}\right)$	CO3	(4)		
		Module 4				
15	a)	Find a Fourier series representation of $f(x) = \begin{cases} -x & ; & -1 < x < 0 \\ x & ; & 0 < x < 1 \end{cases}$.	CO4	(5)		
	b)	Find the Half range cosine series of the function e^{-x} , $0 < x < 1$	CO4	(4)		
16	a)	Find a Fourier series representation of $f(x) = \begin{cases} -x & ; & -1 < x < 0 \\ x & ; & 0 < x < 1 \end{cases}$.	CO4	(4)		
	b)	Find a Fourier series representation of $f(x) = x^2, -\pi \le x \le \pi$. Hence show	CO4	(5)		
		that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$				

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST/SECOND SEMESTER B. TECH DEGREE EXAMINATION, MONTH AND YEAR

Course Code: GZPHT121

Course Name: Physics for Physical Science and Life Science

(Common to C & D)

Max. Marks: 60

Duration:

1: 2 hours 30 minutes

	PART A		
	Answer all questions. Each question carries 3 marks	CO	Marks
1	Compare stimulated demission and spontaneous emission.	1	(3)
2	With a block diagram briefly explain fiber optic communication system.	1	(3)
3	Compare interference and diffraction of light.	2	(3)
4	Define resolving power and dispersive power of a grating.	2	(3)
5	What are the properties of wave function of a particle?	3	(3)
6	What is Quantum Mechanical Tunnelling? Give two examples.	3	(3)
7	Compare transverse and longitudinal waves.	4	(3)
8	Compare echo and reverberation.	4	(3)

PART B

Answer any one full question from each module. Each question carries 9 marks

	Module 1					
9	a)	Explain the construction and working of CO2 laser.	1	(6)		
	b)	Write any six applications of laser.	1	(3)		
10	a)	Derive the numerical aperture of optic fiber	1	(6)		
	b)	Refractive index of core and cladding of a step index fiber are 1.485 and	1	(3)		
		1.475 respectively. Calculate its NA and acceptance angle.				
		Module 2				
11	a)	Derive Cosine law of interference in case of thin films.	2	(6)		
	b)	In a Newton's rings arrangement, diameter of the 10 th and 15 th dark rings are	2	(3)		
		0.55cm and 0.64cm respectively. Find the radius of curvature of lens if the				
		light used is of wavelength 632nm.				
12	a)	Derive the grating equation.	2	(6)		
	b)	For a grating with 5000lines/cm kept at normal incidence, find the angle of	2	(3)		
		diffraction for light of wavelength 556nm in the second order.				
	Module 3					

13	a)	Derive time dependent Schrodinger equation	3	(5)		
1	b)	For an electron confined in one dimensional box of width 2A ⁰ , calculate the	3	(4)		
		first three energy values.				
14	a)	Derive of energy eigenvalues and normalized wave function for a particle	3	(6)		
		confined in an infinite square well potential.				
	b)	Calculate the wavelength of an electron accelerated through a potential 1000	3	(3)		
		volts.				
	Module 4					
15	a)	Derive the frequency of fundamental mode of transverse vibrations in a	4	(6)		
		stretched string.				
1	b)	The volume of a hall is 3000 m ³ . It has a total absorption 100 m ² sabine. If	4	(3)		
		the hall is filled with an audience who add another 50 m ² sabine, then find the				
		difference in reverberation time.				
16	a)	Explain the construction and working of Piezoelectric oscillator.	4	(3)		
	b)	Explain the construction and working of Ultrasonic diffractometer,	4	(3)		
	c)	What is Pulse echo method in NDT?	4	(3)		

MODEL QUESTION PAPER

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B. TECH DEGREE EXAMINATION, MONTH AND YEAR

		Course Code: GCCVT122		
		Course Name: Chemistry for Physical Science		
Ma	x. M	Iarks: 60Duration:2 hours 30	minute	s
		PART A		
		Answer all questions. Each question carries 3 marks	CO	Marks
1		Explain the following i) Aniline point ii) Flash point?	1	(3)
2		Give any three applications of carbon nanotubes.	1	(3)
3		Represent the electrode reactions at different electrodes of a Li–ion cell during discharging.	2	(3)
4		Calculate the emf of the following cell, $Zn(s)/Zn^{2+}(0.3M)//Ag^{+}(0.04 M)/Ag(s)$	2	(3)
		at 25°C. Write the cell reaction. The E^0 cell is 1.56 V at 25°C.		
5		Sketch the TGA and DTA profile of CaC ₂ O ₄ .H ₂ O.	3	(3)
6		State Beer Lambert's Law. Write its differential form.	3	(3)
7		Calculate the hardness of 0.05M CaCl ₂ solution.	4	(3)
8		Explain ozone layer depletion?	4	(3)
		PART B	1	-1
		Answer any one full question from each module. Each question carries 9 m	arks	
		Module 1		
9	a)	Describe the various steps involved in the manufacture of Portland cement.	1	(5)
	b)	Explain the classification of conducting polymers?	1	(4)
10	a)	Explain the working of a Bomb calorimeter for determining the calorific value	1	(5)
		of a solid fuel with the help of a neat diagram.		
	b)	Briefly outline the following properties of lubricants a) viscosity index b) flash	1	(4)
		and fire points.		
		Module 2		
11	a)	Explain the construction and working of H ₂ -O ₂ fuel cells. List any two	2	(5)
		application?.		
	b)	Explain the principle of electroless plating. Write the reactions involved in the	2	(4)
		eletroless plating of copper?		

]					
12	a)	Explain the construction and working of a calomel electrode as a reference	2	(5)		
		electrode? What is the variation in the potential of a calomel electrode with				
		change in chloride ion concentration?				
	b)	Explain the mechanism of electrochemical corrosion of iron in oxygen rich	2	(4)		
		acidic environment				
	<u> </u>	Module 3				
13	a)	Explain the principle, instrumentation and application of GC.	3	(5)		
	b)	Explain the various modes of vibrations possible in H ₂ O molecule. Which of	3	(4)		
		them are IR active? Give reasons.				
14	a)	Briefly explain the principle and instrumentation of SEM	3	(5)		
	b)	UV-Visible spectroscopy is also known as 'Electronic Spectroscopy'. Justify	3	(4)		
		the comment.				
		Module 4				
15	a)	Explain Trickling Filter process	4	(5)		
	b)	Describe various disinfection methods	4	(4)		
16	a)	Describe the methods for Solid waste disposal?	4	(5)		
	b)	What are the various sources of air pollution and how can this be controlled?	4	(4)		

MODEL QUESTION PAPER

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B. TECH DEGREE EXAMINATION, MONTH AND YEAR

		Course Code: GCEST103				
Ma	Course Name: Engineering Mechanics Max_Marks: 60 Duration: 2 hours 30 minutes					
Ivia	X. IVI		mmate	5		
	1	PART A				
		Answer all questions. Each question carries 3 marks		Marks		
1		A force of magnitude 60 N is applied at the origin of x-y-z axes and through	CO1	(3)		
		the point A(1,1.5,2.25), Determine the components of force along x-y-z axes.				
2		Explain free body diagram with an example.	CO2	(3)		
3		Distinguish between angle of friction and angle of repose.	CO2	(3)		
4		Define the terms moment of inertia and polar moment of inertia.	CO2	(3)		
5		State and explain D'Alembert's principle.	CO5	(3)		
6		The equations of motion of a particle moving in a straight line is given by s =	CO5	(3)		
		$20t+5t^2$ -3t ³ where s is in metres and t in seconds. Find the velocity and				
		acceleration at the start.				
7		Differentiate between curvilinear motion and projectile motion.	CO5	(3)		
8		A body is projected at an angle such that its horizontal displacement is 3	CO5	(3)		
		times that of maximum height. Find the angle of projection.				
	•	PART B		1		
		Answer any one full question from each module. Each question carries 8 m	arks			
	.	Module 1		1		
9	a)	Concurrent forces 1, 3, 5, 7, 9 and 11 N are applied at the center of regular	CO3	(9)		
		hexagon acting towards its vertices as shown in Figure 3. Determine the				
		magnitude and direction of the resultant.				

10	a)	Determine the reactions at the supports A and B of the beam loaded as shown in figure. 120N $120N$ $120N$ $60N/m$ $60N/m$ $60N/m$ $60N/m$ $60N/m$ 700 $60N/m$ 700	CO3	(9)
		Module 2		
11	a)	A uniform ladder 4m length rest against a vertical wall with which it makes angle of 45°. The coefficient of friction between the ladder and wall is 0.4 that between the ladder and floor is 0.5. If a man whose weight is one half the weights of ladder ascents it, how high will be he when the ladder slips.	CO4	(9)
12	a)	Calculate the centroid of the composite area shown in figure.	CO4	(9)
	1	Module 3		
13	a)	An elevator weights 2500 N and is moving vertically downwards with constant acceleration. Write the equation for the elevator cable tension. Starting from rest it travels a distance of 35 metres during an interval of 10 seconds. Find the cable tension during this time. Neglect all other resistances to motion. What are the limits of cable?	CO5	(9)
14	a)	Two masses $MA = 20$ kg and $MB = 10$ kg are connected by a bar of negligible mass. Find the acceleration of the system when it slides down an inclined plane of inclination 45° as shown in figure. Also find the force in	CO5	(9)

		bar. Assume $\mu A = 0.2$ and $\mu B = 0.4$.		
	1 . 1	Module 4		
15	a)	A car starts from rest on a curved road of radius 250 m and attains a speed of 18 km/hour at the end of 60 seconds while travelling with a uniform acceleration. Find the tangential and normal accelerations of the car 30 seconds after it started.	CO5	(9)
16	a)	A flywheel rotates for 5s with a constant angular acceleration and describes	CO5	(9)
		during that time 100 rad. Then it rotates with constant angular velocity and		
		angular acceleration.		

MODEL QUESTION PAPER APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B. TECH DEGREE EXAMINATION, MONTH AND YEAR **Course Code: GCEST104 Course Name: Introduction to Mechanical and Civil Engineering** Max. Marks: 60 Duration: 2 hours 30 minutes PART A Answer all questions. Each question carries 3 marks CO Marks Draw the P-v and T-s diagram of Otto cycle and list out the processes 1 1 (3) involved. Define the following terms: a) COP b) Dew point temperature 2 2 (3) c) Specific humidity 3 3 List out the different types of welding used. (3) 4 How turbines are classified and give examples. 2 (3) Define: a)Plinth area b)Carpet area c)Floor area ratio (3) 5 Discuss the role of a civil engineer in the infra structural development of a 6 4 (3) country. 7 List the characteristics of good stone that is used for the construction. 6 (3) 8 What is weathering, and how does it contribute to the rock cycle? (3) 6 PART B Answer any one full question from each module. Each question carries 8 marks Module 1 9 Derive the efficiency of Carnot's cycle. a) 1 (5) A Carnot's engine between 500°C and 95°C. Find out the efficiency of the 1 (4) b) engine. Also calculate the work developed, if it takes 1200 kJ of heat from the high temperature reservoir. 10 Explain the working of a 2-stroke diesel engine with neat diagram. 2 (9) a) Module 2 11 With the help of neat diagram explain the working of a centrifugal pump 2 (6) a) b) What do you mean by priming? Why is it required in a centrifugal pump? 2 (3) What are the steps involved in a sand-casting process. Explain in detail with 3 (9) 12 a) neat sketch. Module 3

13	a)	List out the major disciplines of civil engineering and explain their role in the infrastructural framework.	4	(9)		
14	a)	Mention the factors to be considered while selecting the site for a building.	5	(4)		
	b)	Draw a neat sketch showing important parts of a residential building.	5	(5)		
	Module 4					
15	a)	Elaborate the tests on bricks to identify its qualities.	6	(9)		
16	a)	Explain the types of steel sections and steel reinforcement that are available.	6	(5)		
	b)	Describe the process to check workability of concrete.	6	(4)		

	MODEL QUESTION PAPER							
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B. TECH DEGREE EXAMINATION, DECEMBER 2024								
	Со	ourse Code: UCEST105						
Max I	Course Name: Algorithmic Thinking with Python							
IVIAA. 1		Duration. 2 hours 50	mmut	75				
	Augunau all au actio	CO	Maulta					
1	Answer all questio	ns. Each question carries 5 marks		IVIARKS				
1	How do you use a decompositi	ion strategy to design a menu-driven calculator	1	(3)				
	that supports four basic an	funmetic operators - addition, subtraction,						
	multiplication, and division?							
2	A mad scientist wishes to make a chain out of plutonium and lead pieces. 4							
	There is a problem, however.							
	next to each other, BOOM! The question is, in how many ways can the							
	scientist safely construct a chain of length <i>n</i> ?							
3	Write a case statement that will	3	(3)					
	following messages, based on							
	Flag value	Message						
	1	Hot						
	2	Luke warm						
	3	Cold						
	Any other value	Out of range						
4	Draw a flowchart to print the numbers that are divisible by 4 but not by 3 in a			(3)				
	list of <i>n</i> positive numbers.							
5	Identify and rectify the problem	4	(3)					
	the greatest common divisor of							
	ABC (n,m)							
	if $n == 2$ return m							
	else return ABC(m, n moo							
6	Write a recursive procedure to	Write a recursive procedure to search for a <i>key</i> in a list of <i>n</i> integers.						
7	Compare and contrast greedy and dynamic programming strategies.			(3)				

in an array. Mode is the value that appears most frequently in the array.							
	1						
PAKI B							
Answer any one full question from each module. Each question carries 9 marks							
Module 1							
9 Walk through the six problem-solving steps to find the largest number out of 1	(9)						
three numbers.							
10a)Your professor has given you an assignment on "Algorithmic thinking" to be2	(5)						
submitted by this Wednesday. How do you employ means-end analysis to							
devise a strategy for completing your assignment before the deadline?							
b) Name two current problems in your life that might be solved through a 1	(4)						
heuristic approach. Explain why each of these problems can be solved using							
heuristics.							
Module 2							
11 a) Mr. Shyam, a history professor, would like to know the percentage increase 3	(6)						
in the population of our country per decade given the first decade and the last							
decade. Other given data include the population at the beginning of each							
decade. Draw a flowchart for determining the percentage increase in the							
population.							
b) Draw a flowchart to find the average mileage of a car in kilometers per litre 3	(3)						
after six fill-ups at petrol pumps. Input data include the number of litres of							
diesel, the starting odometer reading, and the odometer reading at each fillup.							
12 a) A standard science experiment is to drop a ball and see how high it bounces. 3	(6)						
Once the "bounciness" of the ball has been determined, the ratio gives a							
bounciness index. For example, if a ball dropped from a height of 10 feet							
bounces 6 feet high, the index is 0.6, and the total distance traveled by the ball							
is 16 feet after one bounce. If the ball were to continue bouncing, the distance							
after two bounces would be 10 ft + 6 ft + 6 ft + 3.6 ft = 25.6 ft. Note that the							
distance traveled for each successive bounce is the distance to the floor plus							
0.6 of that distance as the ball comes back up. Write an algorithm that lets the							
user enter the initial height of the ball, bounciness index and the number of							
times the ball is allowed to continue bouncing. Output should be the total							
distance traveled by the ball.							

	b)	Light travels at 3×10^8 meters per second. A light-year is the distance a light					(3)
		beam travels in one year. Write an algorithm that inputs a large distance value					
		(in meters) and displays it in light-years.					
				Module	3		
13	a)	Write a recu	rsive function	to find an a	array's minimum and maximum	4	(5)
		elements. You	le (a, b) , where a is the minimum	1			
		element and b	1				
	b)	Write a program to input a matrix and determine its type: lower triangular,				4	(4)
		upper triangul					
14	a)	Write a program to read N words and display them in the increasing order of				4	(6)
		their lengths. The length of each word is also to be displayed.					
	b)	There are 500 light bulbs (numbered 1 to 500) arranged in a row. Initially					(3)
		they are all O	even numbered bulbs are turned				
		ON. Next, star	g every third bulb, it is turned ON				
		if it is OFF, and it is turned OFF if it is ON. This procedure is repeated for					
		every fourth bulb, then every fifth bulb, and so on up to the 500th bulb. Devise					
		an algorithm to determine which bulbs glow at the end of the above exercise.					
				Module	4		
15	a)	Studies show that the capacity of an empty human stomach is 1.5 litres o					(6)
		average. Give a greedy algorithm to output an efficient lunch menu					
		maximizing the total nutritional value. The available items along with their					
		nutritional values are tabulated below:					
			Available	Nutritional			
		Recipe	quantity	value		1	
		Cooked rice	2.5 cups	800 calories			
			2.5 Cups				
		C 1	1.5	1401			
		Sambar	1.5 cups	140 calories			
		Potato curry	0.5 cup	50 calories			

		Fish fry	0.5 cup	200 calories			
		Buttermilk	1 cup	98 calories			
		Payasam	2 cups	300 calories			
	You may assume that 1 cup is equivalent to 250ml.b)How are recursion and dynamic programming (DP) related? Is it possible to						
				ing (DP) related? Is it possible to	2	(3)	
		construct a DP version for all recursive solutions?					
16	16 a) Write a Python program for a random walk simulation in				k simulation in a 2D grid starting	3	(4)
		from the origin (0, 0). At each step, randomly move up, down, left, or right.					
		Print the final position after 10 steps.					
	b) Use divide and conquer to find the majority element in an array, where				ty element in an array, where the	2	(5)
		majority element appears more than n/2 times. Divide the array into two					
		halves, find the majority element in each half, and combine the results to					
		identify if there is a majority element in the entire array.					
	*****					<u> </u>	